

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 2

Dr. Felix Distel Summer Semester 2013

Exercise 5

Can the following statements in natural language be expressed in \mathcal{EL} ? If possible, give an \mathcal{EL} -axiom that captures their meaning.

- Superheroes that wear bat-costumes have sidekicks.
- Someone whose opponent is a superhero is a supervillain.
- Only superheroes and supervillains can have superpowers.

Exercise 6

Proof that existential restrictions are monotonic, i.e. show

 $C \sqsubseteq_{\mathcal{T}} D \rightarrow \exists r. C \sqsubseteq_{\mathcal{T}} \exists r. D.$

Exercise 7

Consider the TBox \mathcal{T} having the following axioms:

$$A \sqsubseteq \exists r. (C \sqcap D),$$
$$B \sqcap \exists r. B \sqsubseteq \exists r. \exists r. B,$$
$$\exists r. \exists r. A \sqsubseteq B,$$
$$C \sqsubseteq B \sqcap \exists r. A \}.$$

Normalize ${\mathcal T}$ using the normalization rules

(NF1)
$$C \sqcap \hat{D} \sqsubseteq E \rightsquigarrow \hat{D} \sqsubseteq A, C \sqcap A \sqsubseteq E,$$

(NF2) $\exists r.\hat{D} \sqsubseteq E \rightsquigarrow \hat{D} \sqsubseteq A, \exists r.A \sqsubseteq E,$
(NF3) $B \sqsubseteq \exists r.\hat{C} \rightsquigarrow A \sqsubseteq \hat{C}, B \sqsubseteq \exists r.A,$
(NF4) $\hat{C} \sqsubseteq \hat{D} \rightsquigarrow \hat{C} \sqsubseteq A, A \sqsubseteq \hat{D},$ and
(NF5) $C \sqsubseteq D \sqcap E \rightsquigarrow C \sqsubseteq D, C \sqsubseteq E$
where $\hat{C}, \hat{D} \notin \mathcal{N}_C \cup \{\top\}$ and A is a new concept name

Exercise 8

Verify whether the subsumption relation

 $A \sqsubseteq \exists r. \exists r. B$

holds with respect to the TBox ${\mathcal T}$ from Exercise 3 using the completion rules

(R1) $A_1 \sqcap A_2 \sqsubseteq B \in \mathcal{T}, A_1, A_2 \in S(A) \rightsquigarrow \text{add } B \text{ to } S(A),$

(R2) $A_1 \sqsubseteq \exists r.B \in \mathcal{T}, A_1 \in S(A) \rightsquigarrow \text{add } r \text{ to } R(A, B)$, and

(R3) $\exists r.A_1 \sqsubseteq B \in \mathcal{T}, A_1 \in S(A_2), r \in R(A, A_2) \rightsquigarrow \text{add } B \text{ to } S(A),$

where each concept name A is initially labelled with $S(A) = \{A, \top\}$ and each pair (A, B) is initially labelled with $R(A, B) = \emptyset$.

Exercise 9

Prove the following result.

Let $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ be a knowledge base.

If *a* is an instance of *C* w.r.t. \mathcal{K} and $C \sqsubseteq_{\mathcal{T}} D$, then *a* is an instance of *D* w.r.t. \mathcal{K} .