

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 3

Dr. Felix Distel Summer Semester 2013

Exercise 10

Let \otimes be a continuous t-norm. Prove the following two statements:

- a) For every $x, y \in [0, 1]$ the set $\{z \in [0, 1] \mid x \otimes z \le y\}$ has a maximum.
- b) $x \Rightarrow y = \max\{z \in [0, 1] \mid x \otimes z \le y\}$ satisfies

$$z \leq x \Rightarrow y \text{ iff } x \otimes z \leq y.$$

Exercise 11

Show that the following three binary operators are continuous t-norms:

Łukasiewicz t-norm: $x \otimes y = \max\{x + y - 1, 0\},\$

Product t-norm: $x \otimes y = x \cdot y$,

Gödel t-norm: $x \otimes y = \min\{x, y\}$.

and that their residua are

Łukasiewicz: $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ 1 - x + y & \text{otherwise} \end{cases}$

Product: $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ \frac{y}{x} & \text{otherwise} \end{cases}$

Gödel: $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$

Exercise 12

A partial order on the set of all t-norms can be defined naturally as follows. Let \otimes_1 and \otimes_2 denote two t-norms. We write

$$\otimes_1 \leq \otimes_2 : \Leftrightarrow \forall u, v \in [0, 1] : u \otimes_1 v \leq u \otimes_2 v$$

Find two t-norms \otimes_{\min} and \otimes_{\max} such that every t-norm \otimes satisfies $\otimes_{\min} \leq \otimes \leq \otimes_{\max}$.

Exercise 13

Show that for every continuous t-norm \otimes and its residuum \Rightarrow , and every *x*, *y*, *z* \in [0, 1]

a)
$$x \le y$$
 iff $(x \Rightarrow y) = 1$,

b)
$$(1 \Rightarrow x) = x$$
,

c)
$$x \Rightarrow (y \Rightarrow z) = (x \otimes y) \Rightarrow z$$
.

Exercise 14

Let \otimes be a t-norm. If $x, y \in (0, 1]$ satisfy $x \otimes y = 0$ then x and y are called *zero divisors* of \otimes . A t-norm is called *nilpotent* if it has zero divisors. Prove that \otimes is not nilpotent iff its precomplement is the Gödel negation.