

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 5

Dr. Felix Distel Summer Semester 2013

Exercise 21

Let C, D be two ALC-concept descriptions, T a crisp ALC-TBox and a an individual name.

- a) Show that C is subsumed by D wrt. \mathcal{T} iff $\mathcal{O} = (\mathcal{T}, \{(C \sqcap \neg D)(a)\})$ is inconsistent.
- b) Give a Gödel-ALC TBox T' (using only the relational operator >) and ALC concept descriptions C' and D' such that
 - $\mathcal{O}' = (\mathcal{T}', \{\langle (\mathcal{C}' \sqcap \neg \mathcal{D}')(a) > 0 \rangle\})$ is inconsistent, and
 - degree $(C' \sqsubseteq_{\mathcal{T}'} D') = 0.$

Exercise 22

Let \otimes_{Π} be the product t-norm. Let $\mathcal{O} = (\mathcal{T}, \mathcal{A})$ be the $\otimes_{\Pi} \mathcal{EL}$ ontology consisting of the TBox $\mathcal{T} = \{ \langle \top \sqsubseteq \mathcal{A} < 1 \rangle \}$ and the ABox $\mathcal{A} = \{ \langle \exists r. \mathcal{A}(a) \ge 1 \rangle \}$.

- a) Is O consistent?
- b) Does \mathcal{O} have a witnessed model?

Exercise 23

As an alternative to the Gödel-negation one can define the *involutive negation* \sim whose semantics is defined as

$$(\sim C)^{\mathcal{I}}(x) = 1 - C^{\mathcal{I}}(x)$$

for all interpretations \mathcal{I} and all $x \in \Delta^{\mathcal{I}}$. Using Gödel- \mathcal{EL} and involutive negation construct a TBox \mathcal{T} and an ABox \mathcal{A} with the following properties.

- a) There is a constant $q \in (0, 1)$ and a concept name A occuring in \mathcal{T} such that $A^{\mathcal{I}}(x) = q$ for all models \mathcal{I} of \mathcal{T} and all $x \in \Delta^{\mathcal{I}}$.
- b) \mathcal{A} is inconsistent but becomes consistent if all occurrences of \neg are replaced by \sim .

Exercise 24

Prove that the following equivalences hold for every t-norm \otimes that is not nilpotent and its t-conorm and residuum.

- a) $\mathbb{1}(x \oplus y) = \mathbb{1}(x) \oplus \mathbb{1}(y)$
- b) $\mathbb{1}(x \Rightarrow y) = \mathbb{1}(x) \Rightarrow \mathbb{1}(y)$