

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 6.1

Dr. Felix Distel Summer Semester 2013

Exercise 25

Let \mathcal{I} be a fuzzy interpretation and let $\mathcal{I}^{crisp} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}^{crisp}})$ be the interpretation defined as

$$A^{\mathcal{I}^{\text{crisp}}}(x) = \mathbb{1} \left(A^{\mathcal{I}}(x) \right)$$
$$r^{\mathcal{I}^{\text{crisp}}}(x, y) = \mathbb{1} \left(r^{\mathcal{I}}(x, y) \right)$$

for all concept names $A \in \mathcal{N}_C$ and all role names $r \in \mathcal{N}_R$. Let D, E be $\otimes \mathcal{EL}^{\neg \sqcup}$ concepts satisfying

$$D^{\mathcal{I}^{\mathrm{crisp}}}(x) = \mathbb{1}\left(D^{\mathcal{I}}(x)\right), \qquad E^{\mathcal{I}^{\mathrm{crisp}}}(x) = \mathbb{1}\left(E^{\mathcal{I}}(x)\right).$$

Prove that

a)
$$(D \sqcup E)^{\mathcal{I}^{\operatorname{crisp}}}(x) = \mathbb{1}\left((D \sqcup E)^{\mathcal{I}}(x)\right)$$

b)
$$(D \to E)^{\mathcal{I}^{\text{crisp}}}(x) = \mathbb{1}\left((D \to E)^{\mathcal{I}}(x)\right)$$

c)
$$(\neg D)^{\mathcal{I}^{\operatorname{crisp}}}(x) = \mathbb{1}\left((\neg D)^{\mathcal{I}}(x)\right)$$

holds for all $x \in \Delta^{\mathcal{I}}$.

Exercise 26

Let \mathcal{A} be an \otimes - $\mathcal{EL}^{\neg \sqcup}$ ABox and let \mathcal{I} be a model of \mathcal{A} . Show that \mathcal{I}^{crisp} defined as in Exercise 25 is also a model of \mathcal{A} .

Exercise 27

Let \mathcal{A} be a \otimes - \mathcal{ALC} ABox and let \mathcal{A}^{crisp} be the ABox obtained from \mathcal{A} by replacing all positive truth degrees in the axioms by 1. Let \mathcal{I} be a *crisp* interpretation. Prove the following:

- a) If \mathcal{I} is a model of \mathcal{A}^{crisp} then \mathcal{I} is a model of \mathcal{A} .
- b) If \mathcal{I} is a model of \mathcal{A} then \mathcal{I} is a model of \mathcal{A}^{crisp} .