

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

# **Fuzzy Description Logics**

## **Exercise Sheet 8**

Dr. Felix Distel Summer Semester 2013

#### Notice

Throughout the exercise sheet, we assume that only  $\geq$ -axioms are allowed and that reasoning is restricted to witnessed models.

## Exercise 36

Decide whether the following instances of PCP have a solution or not.

- a) {(00, 1), (11, 1), (0, 00)}
- b) {(0, 1), (01, 0), (1, 0)}
- c) {(0,01), (1,01), (101, 10), (00,0)}
- d) {(01,010), (100,00), (010, 100)}

#### **Exercise 37**

Let *A* be a concept name. Construct a Lukasiewicz- $\mathcal{ALC}$  ontology such that  $\mathcal{A}^{\mathcal{I}}(x) \in [0.25, 0.75]$  for every model  $\mathcal{I}$  and  $x \in \Delta^{\mathcal{I}}$ .

### **Exercise 38**

For which of the three standard t-norms  $\otimes$  are the following  $\otimes$ - $\mathcal{ALC}$  ABoxes consistent?

- a)  $\mathcal{A}_1 = \{ \langle A(a) \ge 0.5 \rangle, \langle \neg (A \sqcap A)(a) \ge 1 \rangle \}$
- b)  $\mathcal{A}_2 = \{ \langle \forall r. \mathcal{A}(a) \ge 1 \rangle, \langle \exists r. \neg \mathcal{A}(a) \ge 0.1 \rangle \}$

### **Exercise 39**

Consider the logic  $\otimes$ - $\mathcal{ALC}$  where

a)  $\otimes$  is the Łukasiewicz t-norm, or

b)  $\otimes$  is the product t-norm.

Can you construct an ontology  $\ensuremath{\mathcal{O}}$  such that

- $\bullet \ \mathcal{O} \ \text{is consistent, and}$
- in any model of  ${\cal O}$  infinitely many truth values occur?

Justify your answer using a proof or an example.