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EQUIVALENCE OF DATALOG QUERIES IS 
UNDECIDABLE* 

ODED SHMUELI 

D Datalog is a powerful query language for relational databases [lo]. We 
consider the problems of determining containment, equivalence, and satis- 
fiability of Datalog queries. 

We show that containment and equivalence are recursively unsolvable. 
This should be contrasted with the work of Aho, Sagiv, and Ullman on 
relational queries [l]. Satisfiability is easily decidable for Datalog queries. 
We also consider Datalogf which allows function symbols. Here, satisfia- 
bility is recursively unsolvable. a 

1. INTRODUCTION 

Recently, there has been a growing interest in logic-programming-based query 
languages and their relationship to traditional database theory 12, 5, 6, 8, 7, 101. 
Datalog queries are composed of a logic program and a single goal. They are 
similar to Prolog programs without extralogical operators. This paper addresses 
some basic problems regarding Datalog queries. Specifically, it considers problems 
concerning containment, equivalence, and satisfiability of Datalog queries. The 
results of this paper were first reported in [9] within a different setting (e.g., in the 
definition of application of a query). 

It is shown that determining containment or equivalence of Datalog queries is 
recursively unsolvable. This should be contrasted with the work of Aho, Sagiv, and 
Ullman on containment and equivalence of relational queries [l]. These results 
also apply to H queries [21. The results are proved using recursively unsolvable 
problems from the theory of context-free languages. As a corollary, we show that 
literal redundancy determination is a recursively unsolvable problem. 

*A preliminary version of this paper is contained in “Decidability and Expressiveness Aspects of 
Logic Queries,” in the ACM Symp. on Principles of Database Systems, 1987. 
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Papadimitriou has obtained a similar equivalence result for a restricted subset 
of Prolog whose syntax and semantics differ from Datalog; the result is sketched in 
his pioneering paper [6]. This language allows the use of negation and equality 
which are not part of the vocabulary of Datalog. Papadimitriou’s result follows 
from the undecidability of equivalence of polynomial-time bounded Turing ma- 
chines. Our result follows from the undecidability of equivalence in a simpler 
system, namely, context-free languages. 

Satisfiability is decidable for Datalog queries. Satisfiability is recursively unsolv- 
able when function symbols are allowed (the language is denoted Datalogf). As a 
corollary, we show that determining whether a Datalogf query is safe, i.e., always 
producing finite result sets, is recursively unsolvable. 

The paper is organized as follows. Section 2 contains definitions. Containment 
and equivalence issues are addressed in Section 3. Satisfiability is treated in Section 
4. Section 5 concludes. 

2. DATALOG QUERIES 

We mostly follow the notation in [4]. A term is defined inductively as follows. 1) A 
variable is a term; 2) A constant is a term; 3) If f is an n-at-y function symbol and 
each ti is a term, then f(tl,. . . , t,) is also a term. If p is an n-at-y predicate symbol 
and each tj is a term, then p(tl, . . . , t,) is an atom. A literal is either an atom or a 
negated atom. A clause is a formula of the form (V_%%C, V em- V C,) where each 
Ci is a literaLand 2 is the sequence of variables appearing in the Cis. We usually 
omit the VX and leave it implicit when we write a clause. A clause can be 
represented as (B, A ... A B,) -+ (A, V -*a VA,) where the Ajs are the non- 
negated C,s (also called the clause head) and the Bjs appear as negated C,s (also 
called the clause body). 

A clause with at most one nonnegated literal is called a Horn clause. We write 
Horn clauses as 

HeudtB ,,..., B,, 
where Head is the clause head and the Bis are the clause body. A goal clause (or 
simply a goal) is a Horn clause with all literals negated. A unit clause is a Horn 
clause consisting of a single nonnegated literal. The empty clause is denoted •I . 

An expression is a term, a literal, or a clause; an expression containing no 
variable occurrence is said to be ground. 

A substitution (Y is a set of pairs YJti, 1 I i I n, where Y,, . . . , Y, are distinct 
variables and t 1, . . . , t, are terms such that Yi is distinct from ti, 1 I i I n. Given 
substitution (Y = {Y,/t,, . . . , Y,/t,) and an expression E, simultaneously substitute 
term tj for variable Y of E and obtain E’. This is called a substitution of E 
according to (Y and is written E’ = Ea. The yis are said to be bound to the tjs. Let 
a and p be substitutions. Let E be an expression; Eap means (Ea)P. 

A substitution (Y is a unifier for E, and E, if E, a = E, CY. Unifier ar is a most 
general unifier (mgu) for E, and E, if for all substitutions y such that E, y = E, y 
there exists a substitution /3 such that E, (~0 = E, y and E, a/3 = E, y. 

A logic program is a finite set of Horn clauses. Let P be a logic program and let 
g be a goal clause; goal g ’ is derived from goal g using a if: 

. g= +A,,...,A,; 

l Pcontainsaclause c=A+-B,,..., B,, w.1.o.g. g and c have no variables in 
common, such that A and some Ai are unifiable with mgu (Y, i.e., Aa =Aia. 



EQUIVALENCE OF DATALOG QUERIES IS UNDECIDABLE 233 

(w.l.o.g., only variables appearing in g or c appear in (Y and if variables W, 
appearing in A, and I’, appearing in Ai, form a pair in (Y, then the pair is 
W/V, i.e., goal variables “survive.“) 

l g’ = CAicY )...) /t_,(Y,Bi(v )...) B,a,Ai+i’Y )...) A,&. 

When P is understood, we use g kg1 to indicate that goal g, is derived, in P, 
from goal g. A sequence g,, . . . , g,,k 2 1 of goals, where for i = 2 ,..., k, gi is 
obtained via a derivation from gi_ 1 using cz_ i, is called an SLD-detiuution of g, 
from g, and is denoted by g, I--‘( g,. g, t-*g2 indicates that g, =g, or for some 

k > 0, g, kk g,. 
A successful deriuation of goal g is an SLD-derivation g I-* •I ending with the 

empty clause, also called an SLD-refutation. 
A Da&log query Q (or simply a query) is of the form (P, g). P is a logic program 

containing neither constants nor function symbols, in which predicate symbols are 
partitioned into EDB predicate symbols and ZDB predicate symbols. ZDB predicate 
symbols are those predicate symbols which appear in the head of some program 
clause. EDB predicate symbols are those predicate symbols which only appear in 
bodies of program clauses. g is a goal clause called the query goal; g is of the 
form +A where A is an atom; no constants or function symbols may appear in A. 

A Datalog query is meant to be applied to databases. A database is a finite set 
of ground unit clauses (also called facts) with EDB predicate symbols; essentially, 
the database is similar to a relational database with relation names corresponding 
to EDB predicate symbols and tuples corresponding to ground unit clauses. 

Example 1. A Datalog query computing the transitive closure of 1. (goal) + q(X, Y ). 

1) qw, z> +- qw, Y), l(Y, z>. 
2) qW,Y) +l(X,Y). w 

In the above example, there are two program clauses 1) and 2). The only EDB 
predicate symbol is 1. The goal has two variables. 

Let U be a set of constants. The result of the application of a Datalog query 
Q = (P, + q) to a database D module U, denoted Q<D, U), is {qcx,, . . . , ak S 1 for 
some k and S, on P u D, + q I-’ q with czi used in the ith step and S assigns to 
all variables in qa, a*. (Yk constants from U}. U is tixed as the domain out of which 
the database constants are taken, and we write Q<D> instead of QCD, 17). U may 
be infinite, and no order is assumed on its elements. Observe that the above 
definition makes Q(D) a set of facts. 

Example 2. When the query of Example 1 is applied to U = {1,2,3,4,5,. . . , lo), 
D = {l&2), 1(2,3), 1(3,1>, 1(4,5)), the result is {q(l, 11, q(1,2), q(L 31, q(2,1), q(2,2), 

q(2,3), qo, 11, qo, 2), qo, 31, q(4,5N. n 
A query Q is satisfiable if there exists a database D such that Q<D> + 0. Query 

Q, contains query Q2, written Q, 2 Q2, if for all databases D, QJD) 2 Q,(D). 
Queries Q, and Q2 are equivalent, written Q, = Q2, if for all databases D, 
Q,(D) = QJD). Database D satisfies query Q if Q<D> is not empty. A query is safe 
if for all databases D, Q<D> is finite. 

At this point, we should clarify the relationship between Datalog queries as 
defined here and their more standard definition as in [lOI. The syntax of Datalog 
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as defined here is almost identical to that in [lo]. One exception is that query goals 
may contain no constants. The results concerning containment, equivalence, and 
satisfiability of Datalog queries remain valid when constants are allowed in query 
goals. 

The semantics of Datalog is traditionally defined “bottom-up,” using a Tp type 
operator (see [4]). The set U in the definition of Q(D, U) is the database domain in 
the Datalog definition in [lo]. In computing bottom-up, we only use substitutions 
which assign values out of U. From the set of facts generated by this bottom-up 
computation, those facts unifying with the query goal atom are selected as the 
answer set. 

In performing SLD resolution on P U D, and substituting values out of U for 
unbound variables following the SLD-refutation, we compute the same answer set 
as in the bottom-up computation. This hinges on two facts: 1) The success set of a 
definite program P is equal to its least Herbrand model which equals Tp t w 
(Theorems 6.5 and 8.3 in [4]); and 2) Let q be an atom and A E B,, A unifies with 
q and +A has an SLD-refutation iff + q has an SLD-refutation with computed 
answer (Y, and there exists a substitution /3 such that A = qcr@ (Lemma 8.2 and 
Theorem 8.4 in [4]). 

3. CONTAINMENT AND EQUIVALENCE 

We prove that for Datalog queries, determining containment or equivalence is 
recursively unsolvable. The proof is by reduction from decision problems for 
context-free languages (CFLs) [3]. Intuitively, the database is used to encode 
terminal symbols in grammars as well as strings (a technique identical to the one 
employed in [6] and similar to that in [ll]). First, U includes all of the grammar’s 
terminal symbols, as well as other constants. A string ai, 1.. ajk can be encoded by a 
chain of triples of the form ICC,,, a,,, cl). . . ICC,_,, uck, c,), where for j = 0,. . . , k, cj 
are constants. If the cjs are distinct, then the encoding is called standard, and 
otherwise it is said to be nonstandard. 

The reduction is by associating with a context-free grammar (CFG) G a Datalog 
query Q(G) = <P,, + g(Z, J)), where PC is a logic program which depends on G, g 
is a symbol not appearing in G, and Z and .Z are variables. Suppose G is given by 
(N, T, P, S), where N is a finite set of nonterminal symbols, T = {a,, . . . , a,) is a 
finite set of terminal symbols, P is a finite set of grammar productions, and S is the 
sentence (start) symbol, N n T = 0 and S EN. Let j denote a single grammar 
derivation, let *k denote a length k derivation, and ** a sequence of zero or 
more grammar derivations. 

We shall assume that (*) the grammar contains no empty productions (i.e., a 
production in which the empty string is produced from a nonterminal symbol), and 
that S does not appear on the right-hand side of any grammar production. Any 
CFG can be transformed to this form, except perhaps for a production in which the 
empty string is produced from S 131. So, we are only treating a subset of the CFGs; 
however, containment and equivalence are still recursively unsolvable on this 
subset. 

Q(G) is constructed thus. The query goal is + g(Z, J). Intuitively, the goal seeks 
a derivation starting with a triple whose first entry is bound to I and ending with a 
triple whose last entry is bound to .Z (this is similar to the technique in [ll]). The 
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only program clause in PC with head predicate symbol g is 

The remaining program clauses in PC are constructed in l-l correspondence 
with G’s productions. Consider a production I/- b, *** b,, where I/ is a nontermi- 
nal symbol and for j = 1,. . . , m, bj E (T u N). The corresponding program clause is: 
u(Z,,,Z,,,,A, ,..., A,)+C ,,..., C,, where for k=l,..., tn, if b,=ajET, then C, 
is ICI,_ ,, Aj, Z,); otherwise, 6, = WE N and C, is w(Zk_ ,, Zk, A,, . . ., A,). 

Example 3. Consider G, = (N, T, P, S) with T = Ia,, ~2, ~31, N = {Q, R, SIT P= 
(S * Q, Q * a,Ra,, R - qa,Q, R * a2a3}. 

The corresponding query Q(G,) is 

({gl(Z,J) c~(A,,A,,A,),~(Z,J,A,,A,,A,). 

s(Z,,,Z,,A,,A~,A~) +q(Z,,Z,,A,,A,,AJ. 

q(Z,>Z,,A,,A,,A,) cI(ZO,A,,ZI),~(ZI,Z~,A,,AZ,A~),~(.Z~,A~,Z~). 

r(Zc,,Z3,A,,Az,AJ cZ(Z,,A,,Z,),1(Z,,A,,Z,),q(Z,,Z,,A,,A,,A,). 

r(ZO,Z2,A1,&,Aj) tl(Z,,A,,Z,),I(Z,,A3,Z2)}, 

(query goal) +g,(Z,J).). n 

Remark (global variables). Usually, the scope of a variable is limited to a single 
clause. For the above construction, an SLD derivation will force all references to 
an ZDB literal to use the same A 1,. . . , A, as an argument. Thus, we may think of 
A ,, . . . , A, as being global variables. 

Let G be a CFG and Q(G) the corresponding query; let D be a database for 
Q(G). 

Proposition 1. If t E Q(G)(D), then there is an SLD-derivation of t with an 
intermediate state of the form (where for 1 I u I w, 1 <j, I n) 

+h(A,,..., A.),l(Z,,Aj,,Z1),...,‘(Z,~,,Ajv,Z,). 

PROOF. In each literal, except for h, there are two places denoting its “before” 
and “after” in a “chain”; for 1, these are the first and last places, whereas for 
nonterminal symbols, these are the first two places. Each intermediate goal can 
thus be looked upon as a “chain.” By (*I, a literal in an SLD-derivation is either 
replaced by some other literal(s) or is unified with a database clause. In case of 
replacement by other literals, the chain property of the new goal is maintained. 
This is ensured by the fact that each program clause “expands” a piece of the chain 
corresponding to a nonterminal symbol. By the Switching Lemma (see [4]), all 
unifications with database clauses can be done as the final steps. Thus, an 
SLD-derivation with the desired form can be obtained. w 

Proposition 2. Let Z,, . . . , 2, be distinct variables; let WE N. 

W**a. ,,,...Vai4 

iff 

(+w(Z,J,A ,,... ,A,)) ~*(CI(Z=Z,,Ai,,Z,),...,[(Z,-,,Ai,,Z,=J)). 
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PROOF. By induction on the length of the derivation. The proof is based on the 
l-l correspondence between program clauses and grammar productions and the 
global variables remark. n 

Z+oposition 3. Let Z,,, . . . , 2, be distinct variables. 

S’*Ui,,...,Uit 

iff 

(+g(Z,J)) ä *(Ch(A,,...,A,),[(z=Z,,Ai,,Z1),..., 

PROOF. A direct corollary of Proposition 2. W 

Lemma 1. Let G, and G, be CFGs, and let Q(G,> and Q(G2) be the corresponding 
queries with query goals + g,(Z, J) and +g,(I, J); Q(G,) c Q(G2) ifs L(G,) L 
LSG,). 

PROOF. (only if) Consider a string (Y E L(G,), where (Y = a,,, . . . ,Uik; we shall 
show that (Y E L(G,). Construct a database D containing a single h clause 
h(a ,, . . . , a,) and 1 clauses which form a triple chain l(b,, a,,, b,), . . . , f(b,_ 1, Ui,, b,) 
which is a standard encoding of CYY. (The his are distinct constants. The h clause 
will force a l-l correspondence between variable Ai and constant, i.e., terminal 
symbol, a,.) Consider the sequence of elementary grammar derivations within 
S, **(Y in G,. By Proposition 3, (**I (cg,(Z,J))~*(th(A,,...,A,),I(Z, 
Ai,7z*)7***7 l(Zk_ 1, Ail’ J)). 

Clearly, we can match the right-hand side conjunction of (**> with the I triple 
chain encoding (Y in D and the h clause forcing, for i = 1,. . . , k, Ai to be bound to 
ai. Therefore, D satisfies g,(Z, J) with Z bound to b, and J bound to b,, and since 
Q(G,) z Q(G*), D satisfies g,(Z, J) with Z bound to b, and J bound to b,. 
Consider an SLD-derivation sequence starting with +g2(Z, J). By Proposition 1, 
there is an intermediate state of the form (where for 1 I u I w, 1 lj, I n) 

+h(AI,..., A,),l(z~,Aj,,z~),...,l(z~-~,Ajw,z~)' 

Continuing the derivation from this state, because of the single database chain in 
D, we have: w = k, I,, bound to b,, Z, bound to b,, and for m = 1,. . . , w = k, Aim 
bound to aim. However, h(A,, . . . , A,) and the single h database clause, namely, 

h(a ,, . . . , a,), force that A, is bound to a, iff u = V, so Aim is bound to aim iff 

j, = i,, 1 I m I k. Thus, the intermediate state above can be written as 

+ h( A,, . . . , A,),I(Z,,Ail,Z1),...,l(Zk~l,Ai,,’,). 

By Proposition 3, S, **ail *** ui, in G,; so (Y E L(G,). 
(if) Consider (i, j) E Q(G,XD); we have to show (i, j) E Q(G,XD). By Proposition 
1, there exists a successful SLD-derivation starting with 

+g,(Z, J) 
with an intermediate state s of the form (where for 1 I u I w, 1 5 j, <n) 

+h(A,,..., A,),I(Z,,Aj,,Z,),...,l(Z,-l,Ajv,Z,). 
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By Proposition 3, S, **ail *** ai,. Since LAG,) LUG,), & -*ail *** aj,. BY 
Proposition 3, 

(+g*(Z,J)) ~*(Ch(A,,...,A,),I(z,Aj,,z,),...,l(z~-,,Aj,,J))' 

Clearly, ( c g&I, J)) F* q by applying the same additional derivation steps from 
the intermediate state s in the refutation of +g,(Z, J) above. Hence, 6, j) E 

Q(G,XD). n 
We thus obtain the following Theorem. 

Theorem 1. It is recursively unsolvable to determine, for arbitrary Data& queries Q,, 
Q,, whether (iI Q, L Q,, (ii> Ql = Q2. 

PROOF. 

1) It is recursively unsolvable to determine, for arbitrary CFGs G,, G,, whether 
L(G,) cL(G,) [3]. This holds even when G, and G, satisfy assumption (*). 
By Lemma 1, L(G,) zL(G,) iff Q(G,)cQ(G,), and hence determining 
Q(G,) E Q(G2) is recursively unsolvable. Therefore, it is recursively unsolv- 
able to determine, given arbitrary queries Q, and Q2, whether Q, L Q2. 

2) It is recursively unsolvable to determine, given arbitrary CFGs G, and G, 
[even under (*)I, whether LAG,) = ZAG,) [31. Consider the corresponding 
queries Q(Gi), Q(G,). Clearly, UG,) = LAG,) iff QCG,) = QCG,). There- 
fore, it is recursively unsolvable to determine, given arbitrary queries Q, and 
Q2, whether Q, = Q2. n 

The results on the undecidability of determining containment and equivalence 
of Datalog queries carry over to H queries 121. 

The following has been observed by Gaifman (see [7]). 

Corollary. The problem of determining, for an arbitrary Datalog query Q, whether Q is 
equivalent to Q’, where Q’ is obtainedfrom Q by removing a literal in a clause of Q, 
is recursively unsolvable. 

PROOF. Let G, and G, be CFGs. Consider Q(G,) and Q(G,), with query 
goals + g,(Z, J) and + g,(Z, .Z). Consider query Q, formed by the union of the 
clauses of Q(G,) and Q(G2) with a goal clause referencing a new clause whose 
body is g,(Z, .Z), g,(Z, J). Let Q’ be obtained from Q, by removing g,(Z, .Z> from 
the new clause. Clearly, Q, is equivalent to Q’ iff Q(G,) 5 Q(G2). n 

For clauses with no built-in predicates, define a safe clause to be one in which 
each variable appearing in the clause head also appears in the clause body [lo]. For 
a Datalog query Q = (P, t q) such that all clauses in program P are safe, for all 
databases D, Q(D) is finite and P U D has a finite Herbrand model. Safe clauses 
are important for practical reasons. If we “revaluate” P U D bottom-up, each 
evaluation phase results in finitely many facts whose constants, inductively, are 
taken from D; since the database is finite, we only need a finite number of 
evaluation phases to compute the query’s result. 

Consider the construction of Q(G). If for each grammar production we also add 
h(A 1,. . . , A,) to the constructed clause body, the result is a program whose clauses 
are all safe. Furthermore, this h(A,, . . . , A,) addition results in a query Q’(G) 
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such that Q’(G) = Q(G). It follows that Theorem 1 holds for the case where the 
logic programs of Datalog queries are constrained to be sets of safe clauses. 

In [61, the following corollary is stated: “Telling whether two sets of positive 
clauses with equality compute the same mapping from database relations to 
defined relations is recursively unsolvable.” We note that: 1) positive Horn clauses 
in [6] are a subset of Prolog which allows negation of EDB relations (i.e., EDB 
negated literals), 2) the notion of what is being computed in [61 is different from 
the one used in this paper, and 3) no additional operators (e.g., inequality) are used 
in this paper. 

4. SATISFIABILITY OF DATALOG’ QUERIES 

Lemma 2. The problem of determining, for an arbitrary Datalog query Q, whether Q is 
satisfiable is solvable. 

PROOF. Suppose a Datalog query Q = (P, + q) is satisfiable on database D. 
This means that there is an SLD-refutation + q t* 0 on P u D. Let D’ be a 
database in which for each EDB predicate symbol r there is exactly one fact 
r(a,. . . , a) where a is a constant. Consider using in a refutation of + q in P u D’ 
the same program clauses, in the same order, as used in the SLD-refutation of + q 
in P U D; of course, for a database clause used in the refutation on D, there is 
exactly one database clause to be used in the refutation on D’. All unifications 
would succeed as there is only one constant symbol. We conclude that Q is 
satisfied in D’. So, Q is satisfiable iff Q is satisfied by D’. 

In checking whether Q is satisfiable on D’, we may eliminate constant a in D’ 
and all variables in P and q, and consider all predicate symbols as 0-ary. This is 
because the unifications will always succeed. So, we end up with a CFG G in which 
the EDB predicate symbols in P are terminal symbols in G and the IDB ones are 
nonterminal symbols in G. Q is satisfiable iff the language generated by G is 
nonempty. Hence, the problem is that of deciding whether the language generated 
by a CFG is nonempty. This problem is decidable [3]. w 

The same result holds for Datalog” which allows constants in both the program 
and goal components of a query. Let Q be a query in Datalog”. Let us modify the 
proof of Lemma 2. In the proof, D’ is populated so that for each EDB predicate 
symbol r, all possible facts using constants from P or q are present. Choose a 
constant b appearing in either P or q. If a database clause used in a refutation on 
D includes new constants not in P or q, then in the corresponding refutation step 
on D’, the D’ clause used will be the one in which the constant b appears in the 
positions where such new constants appear. So, Q is satisfiable iff Q is satisfied 
by D’. 

The CFG construction of Lemma 2 no longer applies in the presence of 
constant symbols. To check satisfiability in D’, it suffices to evaluate, bottom-up, 
P U D’ with U being the constants in D’; this evaluation terminates after finitely 
many phases as U is finite. Q is satisfiable iff q is unifiable with any of the 
resulting facts having the predicate of q. 

Define a Datalogf query in the same way a Datalog query is defined, except that 
both the logic program component and the goal component of the query may 
contain arbitrary terms involving function symbols (and constants). This language is 
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powerful enough to express the partial recursive functions 141. Hence, it is not 
surprising that satisfiability of queries becomes undecidable. We show this with a 
direct simple reduction from a well-known undecidable problem. 

Theorem 2. The problem of determining, for an arbitrary Datalog f query Q, whether Q 
is satisfiable is recursively unsolvable. 

PROOF. By reduction from the modified Post correspondence problem (MPCP). 
The Post correspondence problem (PCP) is as follows: given k pairs of strings 
xl,y,,.*-,xk,y,, determine whether there is a sequence i,, . . . , i,, for 1 <j in, 
1 5 ij 5 k, such that xi,xi, **a xi, = yi, yiz ... yin (each side of this equation denotes 
the concatenation of n strings). MPCP is PCP with the added requirement that 
i, = 1. Both PCP and MPCP are recursively unsolvable [3]. 

Let, for i = 1, . . . , k, xi = xi, 1 0.. xi, g, and yi = yi, , * ** yi, ,,!. We transform an MPCP 
instance into a Datalog query. The MPCP instance contains k pairs of strings. The 
query contains the 3-ary predicate symbol append used for concatenating lists. 
There is a 2-ary predicate symbol S. Intuitively, in atom s(X,, Y,), X, and Y, are 
strings guessed so far in a nondeterministic fashion. nil is a constant (O-ary 
function symbol). 

The query goal is [for clarity, we use A.B to abbreviate list(A, B)] 

+ s x1,1 “‘Xl,&. ( nib,, **a y,,,,.nil). 

For each pair xi, yi, there is a program clause of the form 

s(Xr, Yi) + append(X,, Xi, 1 *** Xi,s,.nil, X2>, 
append(Y,,yi,l 0.*yi,,l.nil,Yz), 
s(X*,Y,). 

Intuitively, the above clause concatenates string xi to X, and yi to Y1 and calls 
s recursively with the new guesses X, and Y, of MPCP solution prefixes. 

One of the program clauses is 
s(X,X) +dbrel(Y). 

This clause checks whether a solution for MPCP has been obtained, and the literal 
dbrel(Y), where dbrel is the only EDB predicate symbol, has some database clause 
with which to unify. 

By construction, the query constructed above is satisfiable iff there exists a 
solution for the MPCP instance. This proves that satisfiability of Datalogf queries 
is recursively unsolvable. n 

&ample 4: Reduction 

MPCP instance: 
x,=abay,=ab;x,= bb y2 = abb; x3 = baa y, = baa; 
Goal: 
+ s(list(a, list(b, list(a, nil>)), Ma, list!h, nil))). 

Program clauses: 
s(X, XI + dbrel(Y). 
appendCni1, X, X). 
append( X, nil, X 1. 
append(list(X, T),list(Y, S), list(X, Z)) +- 

append(T, l&Y, 9, Z). 
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append(X,, list(a, list(b, Ma, nil))), X2), 
append(Y,, list(a, list(b, nil)>, Y,), 
s<x,, Y2). 

s(X,,YJ + 
append(X,, Mb, Mb, nil)), X2>, 
append(Y,, list(a, list(b, list(b, nil))), Y,), 
s(X,, Y,). 

s(X,,Y,) + 
append(X,, list(b, list(a, Ii&a, nil))), X2), 
append(Y,, list(b, list(a, list(a, nil))), Y,), 
SO&, Y*). n 

As a corollary to Theorem 2, we obtain the following results; 

Corollary. It is recursively unsolvable whether a given database D satisfies a Datalog f 

query Q. w 

Corollary. The problem of determining, for an arbitrary Datalog f query Q, whether Q 
is safe is recursively unsolvable. 

PROOF. By reducing the satisfiability problem to the safety problem. Construct a 
program as in the satisfiability construction (proof of Theorem 2). Add to it the 
following clauses: 

g(X,, X2, X3) + AX,, X2), gen(XJ. 
gen(list(X, nil)) + dbrel(X). 
gen(list(X, Y >) +- dbrel(X), gen(Y 1. 

Form a new query goal: 
+g(x,, -**xlg,.nil, y,, -** y,,,.nil, X,). 

If the MPCP instance has a solution, this query, on a database in which dbrel is not 
empty, returns an infinite number of facts whose last component contains terms of 
the form list(A, I3), and otherwise it returns no facts at all. Therefore, the new 
query is safe iff the MPCP has no solution. n 

5. CONCLUSIONS 

We have proved that the problem of determining containment or equivalence of 
Datalog queries is recursively unsolvable. Our containment and equivalence results 
extend to H [2]. Likewise, satisfiability of Datalogf queries is recursively unsolv- 
able. Satisfiability of Datalog queries and Datalog’ queries is decidable. 

I had stimulating discussions with K. R. Apt, C. Beeri, A. K. Chandra, N. Francez, A. Itai, A. Walker, 
and R. Y. Pinter. I would also like to thank the referees of this journal for their comments and 
suggestions. This work was supported by the Fund for the Promotion of Research at the Technion. 

REFERENCES 
1. Alto, A. V., Sagiv, Y., and Ullman, J. D., Equivalence Among Relational Expressions, 

SLAM J. Computing, 8(2):218-246 (May 1979). 



EQUIVALENCE OF DATALOG QUERIES IS UNDECIDABLE 241 

2. 

3. 
4. 
5. 

6. 

7. 

8. 

9. 

10. 

11. 

Chandra, A. K. and Harel, D., Horn Clauses Queries and Generalizations, J. I%& 
Programming, l:l-15 (1985). 
Harrison, M. A., Introduction to Formal Language Theory, Addison-Wesley, 1978. 
Lloyd, J. W., Foundations of Logic Programming, 2nd edition, Springer-Verlag, 1987. 
Naqvi, S. and Tsur, S., A Logical Language for Data and Knowledge Bases, Computer 
Science Press, Potomac, MD, 1989 (North-Holland, 1974). 
Papadimitriou, C. H., A Note on the Expressive Power of Prolog, Bulletin EATCS (June 
1985). 
Sagiv, Y., Optimizing Datalog Programs, in: Proc. 6th ACM SIGACT-SZGMOD-SIGART 
Symp. on Principles of Database Systems, San Diego, CA, Mar. 1987, pp. 349-362. 
Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, 
1986-1990. 
Shmueli, O., Decidability and Expressiveness Aspects of Logic Queires, in: Proc. in 
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, San Diego, 
CA, Mar. 1987, pp. 237-249. 
Ullman, J. D., Principles of Database and Knowledge-Based Systems, Vol. I, 2, Computer 
Science Press, Potomac, MD, 1988. 
Ullman, J. D. and Van Gelder, A., Parallel Complexity of Logical Query Programs, in: 
IEEE FOCS Conf, pp. 438-454. 


