
Fundamenta Informaticae 33(2), 1998, 201{209 1IOS PressTermination of graph rewriting is undecidable�Detlef PlumpFachbereich Mathematik und InformatikUniversit�at Bremen28334 Bremen, Germanydet@informatik.uni-bremen.de
Abstract. It is shown that it is undecidable in general whether a graph rewriting system(in the \double pushout approach") is terminating. The proof is by a reduction of the PostCorrespondence Problem. It is also argued that there is no straightforward reduction of thehalting problem for Turing machines or of the termination problem for string rewriting systemsto the present problem.Keywords: graph rewriting, termination, Post Correspondence Problem1. IntroductionIn 1978, Huet and Lankford showed that it is undecidable in general whether a term rewritingsystem is terminating, that is, whether every computation of a system eventually halts [4]. More-over, their proof implies that termination of string rewriting systems is undecidable. In the presentpaper, it is shown that termination of graph rewriting systems|in the so-called double pushoutapproach [2, 1]|is undecidable, too.Huet and Lankford simulated Turing machines by term rewriting systems such that a givenmachine halts on all inputs if and only if the corresponding term rewriting system terminates forall terms. Thus, they obtained a reduction of the uniform halting problem for Turing machines tothe termination problem for term rewriting systems. In the framework of graph rewriting, however,a straightforward reduction of the halting problem or of the termination problem for string rewritingis not possible. In both cases, the problem is caused by cyclic graphs. Consider, for instance, thestring rewrite rule ab ! ba which may be translated into the following graph rewrite rule foredge-labelled graphs: a b =) b aClearly, the string rewriting system fab ! bag is terminating, that is, its rule can be appliedto a string only �nitely often. In contrast, the graph rewriting system consisting of the above ruledoes not terminate as it admits the following in�nite rewrite sequence of cyclic graphs:�Part of this research was performed while the author was on leave at CWI, Amsterdam, supported by a grant ofthe HCM network EXPRESS.

a bb =) b ab =) b ba =) a bb =) . . .The same problem arises when Turing machines are simulated by graph rewriting. An exampleis a Turing machine doing nothing else than moving its head one cell to the right after readingthe symbol a. This machine obviously terminates for all input strings. But when translated into agraph rewriting system (analogously to the translation of string rewriting systems sketched above),a cyclic \tape" labelled with a's will issue an in�nite rewriting.The halting problem for Turing machines easily can be reduced to the termination problem forgraph rewriting on well-formed graphs representing Turing machine con�gurations. Likewise, thereis a straightforward reduction of the termination problem for string rewriting to the terminationproblem for graph rewriting on \string graphs". Undecidability of termination for these restrictedgraph classes, however, does not imply that termination is undecidable for general graph rewriting,that is, for graph rewriting on arbitrary graphs.Therefore, in this paper, the Post Correspondence Problem (PCP) is reduced to the problem ofdeciding whether a given graph rewriting system is terminating. The basic idea of the encoding ofthe PCP is similar to the idea behind reductions of the PCP to the termination problem for termrewriting systems, as given by Lescanne [5], Zantema [7] and Ferreira [3]. But the encoding by graphrewriting is more involved as the non-linear rules used in those papers do not have counterparts ingraph rewriting systems.The rest of this paper is organized as follows: Section 2 contains a brief review of graph rewritingsystems, in Section 3 the main result is proved, and Section 4 concludes by stating an undecidabilityresult following from the proof of the main result.2. Graph rewritingBelow the double pushout approach to graph rewriting is briey reviewed. For a comprehensivesurvey, the reader may consult [1] or [2].A label alphabet � = h�V;�Ei is a pair of �nite sets of vertex labels and edge labels. A graphover � is a system G = hVG; EG; sG; tG; lG; mGi consisting of two �nite sets VG and EG of vertices(or nodes) and edges, two source and target functions sG; tG: EG ! VG, and two labelling functionslG: VG ! �V and mG: EG ! �E.Given two graphs G and H, G is a subgraph of H, denoted by G � H, if VG and EG aresubsets of VH and EH , respectively, and if sG, tG, lG and mG are restrictions of the correspondingfunctions inH. A graph morphism f :G! H between two graphs G andH consists of two functionsfV: VG ! VH and fE: EG ! EH preserving sources, targets and labels, that is, sH � fE = fV � sG,tH � fE = fV � tG, lH � fV = lG and mH � fE = mG. The morphism f is an isomorphism if fV andfE are bijective. In this case G and H are isomorphic, which is denoted by G �= H.A rule r = (L � K � R) consists of three graphs L, K and R such that K is a subgraph ofboth L and R. The graphs L and R are the left- and right-hand side of r, and K is the interface.Given a graph G, a graph morphism f :L! G satis�es the gluing condition if the following holds:Dangling condition. No edge in G� f(L) is incident to any node in f(L)� f(K).Identi�cation condition. For all distinct items x; y 2 L, f(x) = f(y) only if x; y 2 K.1Given two graphs G and H, and a set of rules R, there is a direct derivation2 from G to Hbased on R, denoted by G)R H, if there is a rule r = (L � K � R) in R and a graph morphismf :L ! G satisfying the gluing condition, such that H is isomorphic to the graph M constructedas follows:1This condition is understood to hold separately for nodes and edges.2See [1, 2] for an equivalent de�nition by a \double pushout" of graph morphisms.

1. Remove all nodes and edges in f(L)� f(K) to obtain a subgraph D of G.2. Add disjointly to D all nodes and edges in R �K to obtain M , where all added items keepthere labels and where the source of an edge e in R�K is de�ned bysM (e) = � fV(sR(e)) if sR(e) 2 VK ,sR(e) otherwise.The target tM (e) is de�ned analogously.Given some n � 0, a derivation of length n from G to H based on R is a sequence of the formG �= G0)R G1)R : : :)R Gn = H. The relation)nR is de�ned as follows: G)nR H if thereexists a derivation of length n from G to H based on R. The relation)�R ()+R) is de�ned by:G)�R H (G)+R H) if there is some n � 0 (n > 0) such that G)nR H.A graph rewriting system G = (�;R) consists of a label alphabet � and a �nite set R of ruleswith graphs over �. The system G is terminating if there does not exist an in�nite rewrite sequenceof the form G0)R G1)R : : :3. Undecidability of terminationThis section is devoted to the proof of the main result, which is stated next.Theorem 3.1. It is undecidable in general whether a graph rewriting system is terminating.In what follows, Theorem 3.1 is proved by reducing the Post Correspondence Problem (PCP)to the problem of deciding whether a given graph rewriting system is terminating. Every instanceof the PCP will be encoded as a graph rewriting system that is non-terminating if and only if thegiven instance has a solution.Recall that the PCP is the problem to decide, given a nonempty listL = h(�1; �1); : : : ; (�n; �n)iof pairs of words over some �nite alphabet �, whether there exists a sequence i1; : : : ; ik of indicessuch that �i1 : : : �ik = �i1 : : : �ik . The list L is an instance of the PCP, and a sequence i1; : : : ; ikwith the above property is a solution of this instance. It is well-known that it is undecidable ingeneral whether an instance of the PCP has a solution [6].In the following encoding of the PCP, a string a1 : : : am (withm � 0) will be encoded as a graphconsisting of m consecutive edges labelled by a1; : : : ; am:a1 a2 . . . amSuch a graph will be depicted also as follows: . . .a1:::amz }| {Let now L = h(�1; �1); : : : ; (�n; �n)i be an arbitrary instance of the PCP. It is assumed thatfor each pair (�i; �i), not both �i and �i are empty words. (The PCP with this restriction clearlyremains undecidable.) Construct the graph rewriting system G(L) = (�;R) as follows: �V =f�; l; rg, �E = � + f1; : : : ; ng + fI; II; IIIg3 and R = R1 [R2 [R3 [R4, where R1; : : : ;R4 arede�ned below.3Here + denotes the disjoint union of sets.

R1 contains the rules4x rI II a1 . . . ap yIII b1 . . . bq z � x yz � x i rI II yIII zfor i = 1; : : : ; n, where �i = a1 : : : ap and �i = b1 : : : bq.R2 contains the rulesx i rI IIIII � x � x i lI IIIIIfor i = 1; : : : ; n.R3 contains the rulesx i lI II yIII z � x yz � x lI II a1 . . . ap yIII a1 . . . ap zfor i = 1; : : : ; n, where �i = a1 : : : ap.R4 contains the following rule:lI II yIII z � yz � rI II yIII zNow the task is to show that the instance L has a solution if and only if G(L) is not terminating.The \only if"-direction, which is the easier part, is given by the next lemma. Three further lemmaswill be needed to show the converse.Lemma 3.1. If L has a solution, then G(L) is not terminating.Proof:If i1; : : : ; ik is a solution of L, then G(L) admits the following cyclic derivation:rI II . . .�i1 :::�ikz }| {III . . .| {z }�i1 :::�ik k=)R1 i1 . . . ik rI IIIII=) R4 =) R2
lI II . . .�i1 :::�ikz }| {III . . .| {z }�i1 :::�ik k(=R3 i1 . . . ik lI IIIII ut4In the following pictures, x, y and z are node names which are used to depict subgraph inclusions.

In the following, a node labelled with l or r is called a control node. As each rule in R has aunique control node in its left- and right-hand side, a direct derivation G)R H will be consideredas an application of a rule \to a control node", and the images of the left- and right-hand controlnode in G and H will be considered as \the same" node (although the labels may be di�erent).Lemma 3.2. Every in�nite rewrite sequence over G(L) contains a control node to which the rulein R4 is applied in�nitely often.Proof:It su�ces to show that the system G	 = (�;R � R4) is terminating. For then every in�niterewrite sequence over G(L) contains in�nitely many applications of the rule in R4. As no rule inR increases the number of control nodes, it follows that there is a control node to which the rulein R4 is applied in�nitely often.To show that G	 is terminating, suppose the contrary. Call an edge a �-edge if it is labelledwith a symbol from �.Claim: In every rewrite sequence over G	, no �-edge produced by R3 is ever removed.Proof: Given a step G)R3 H, there is no directed path in H from a node labelled with r tothe source node of any �-edge produced by the step. Hence none of these edges can be removedby applying a rule to H. Moreover, it is easy to see that all rules in R1 [R2 [R3 preserve theabsence of a directed path from a node labelled with r to a �xed �-edge. Thus none of the �-edgesproduced by G)R3 H can be removed in a future step.By the claim and the fact that the rules in R1[R2 do not produce �-edges, all �-edges removedby an R1-step in a rewrite sequence over G	 have been present already in the start graph of thesequence. It follows that every in�nite rewrite sequence over G	 contains only a �nite number ofR1-steps: each of these steps removes some �-edges while neither R1 nor R2 produces �-edges.Hence, if G	 is not terminating, the system (�;R2 [R3) must admit an in�nite rewrite sequence.But this is impossible since all rules in R2 [R3 decrease the number of nodes and edges with labelin frg [f1; : : : ; ng. Thus G	 is terminating. This concludes the proof of Lemma 3.2. utLemma 3.3. If an in�nite rewrite sequence over G(L) starts from a connected graph, then allgraphs in the sequence contain exactly one control node.Proof:For every graph G, call a subgraph C an index chain of length k, k � 0, if C has the formi1 . . . ik rIwhere i1; : : : ; ik 2 f1; : : : ; ng and where only the control node may be incident to edges not belongingto C. The following claim follows immediately from the shape of the rules in R.Claim: Let G)R H be a direct derivation and C be an index chain of length k in G. Then(1) C is (up to isomorphism) also an index chain in H, or(2) C is transformed into an index chain of length k + 1, or(3) G)R H is an application of a rule from R2 to the control node in C.Let now G0)R G1)R : : : be an in�nite derivation such that G0 is connected. Since allrules in R preserve the number of control nodes, it su�ces to show that there is some graph inthe rewrite sequence that contains exactly one control node. By Lemma 3.2, there is a controlnode c to which the rule in R4 is applied in�nitely often. Hence there are 0 � s < t such thatGs)R4 Gs+1)+R Gt)R4 Gt+1, where Gs)R4 Gs+1 and Gt)R4 Gt+1 are applications of R4to c and where Gs+1)+R Gt does not contain an application of R4 to c. By the shape of the rulein R4, c belongs to an index chain of length 0 in Gs+1. Moreover, there must be some s0 withs < s0 < t such that Gs0)R2 Gs0+1 is an application of R2 to c. Hence, by the above observation,c belongs to an index chain in Gs0 . By the shape of the rules in R2, if c is connected with anothercontrol node d in Gs0 , then all nodes of the index chain containing c are connected with d via a

path that does not contain c. But this contradicts the de�nition of an index chain. That is, ccannot be connected with another control node. Since G0 is connected and all rules in R preserveconnectedness, it follows that c is the only control node in Gs0 . utLemma 3.4. If G(L) is not terminating, then there is an in�nite rewrite sequence that starts witha derivation of the formlI II . . .�j1 :::�jmz }| {III . . .| {z }�j1 :::�jm =)R4 rI II . . .�j1 :::�jmz }| {III . . .| {z }�j1 :::�jmm=)R1 j1 . . . jm rI IIIII
=)R2 j1 . . . jm lI IIIII
m=)R3 lI II . . .�j1 :::�jmz }| {III . . .| {z }�j1 :::�jmwhere m � 1 and j1; : : : ; jm 2 f1; : : : ; ng.Proof:Since the left- and right-hand sides of all rules in R are connected, every direct derivation G)R Htakes place within some connected component C of G and transforms C into a connected componentof H. Therefore every in�nite rewrite sequence over G(L) contains a connected component which issubject to in�nitely many rule applications. By �ltering out all rule applications to this componentand restricting all graphs to this component, one obtains an in�nite rewrite sequence of connectedgraphs. By Lemma 3.2, from some point on this sequence has the form G1)R4 H1)�R	 G2)R4H2)�R	 : : : with R	 = R � R4. By Lemma 3.3, all graphs in this sequence contain exactlyone control node. Thus, taking into account the shape of the rules in R, the derivation G1)R4H1)�R	 G2 must be of the form G1)R4 H1)mR1 P1)R2 Q1)mR3 G2, where m � 1 and whereG1, H1, P1, Q1 and G2 are as in the above picture. (The control node to which R4 is applied inG1 can be subject to an R4-application in G2 only if H1)�R	 G2 is as depicted. Note that, by thedangling condition for direct derivations, nodes being removed are incident only to edges having apreimage in the left-hand side of the applied rule.) utUsing Lemma 3.1 and 3.4, it is straightforward to prove the main result.

Proof of Theorem 3.1:By the undecidability of the Post Correspondence Problem, it su�ces to show that the instance Lhas a solution if and only if the graph rewriting system G(L) is not terminating. Lemma 3.1 showsthe \only if"-direction of this equivalence. For the converse, suppose that G(L) is not terminating.Then, by Lemma 3.4, there is an in�nite rewrite sequence containing a graph of the formlI II . . .wz }| {III . . .| {z }wwhere w is a some word over �. By the shape of the rules in R, the next steps in the sequence havethe form lI II . . .wz }| {III . . .| {z }w =)R4 rI II . . .wz }| {III . . .| {z }wk=)R1 i1 . . . ik rI IIIIIwhere k � 1 and i1; : : : ; ik 2 f1; : : : ; ng. By the shape of the rules in R1, this implies �i1 : : : �ik =w = �i1 : : : �ik . Thus, i1; : : : ; ik is a solution of L. 24. ConclusionBy a reduction of the Post Correspondence Problem, it has been shown that termination of graphrewriting is undecidable in general. Somewhat surprisingly, the possible presence of cycles ingraphs prevents a straightforward reduction of the halting problem for Turing machines or of thetermination problem for string rewriting systems to the present problem.It is worth noting that the given reduction of the PCP also shows the undecidability of thefollowing problem. Call a graph rewriting system cyclic if it admits a derivation in which somegraph occurs twice. (So every cyclic system is non-terminating, but the converse does not hold ingeneral.) From the proof of Theorem 3.1 one obtains the following result.Theorem 4.1. It is undecidable in general whether a graph rewriting system is cyclic.For, the proof of Lemma 3.1 shows that the system G(L) is cyclic whenever an instance L of the PCPhas a solution, and the premise of Lemma 3.4|which requires that G(L) is not terminating|clearlyholds true if G(L) is cyclic.Acknowledgement. The author wishes to thank J�urgen M�uller for discussions about terminationof graph rewriting, and Annegret Habel for comments on a previous version of this paper.

References[1] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and MichaelL�owe. Algebraic approaches to graph transformation | Part I: Basic concepts and doublepushout approach. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Com-puting by Graph Transformation, volume 1, chapter 3, pages 163{245. World Scienti�c, 1997.[2] Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In Proc. Graph-Grammars and Their Application to Computer Science and Biology, volume 73 of Lecture Notesin Computer Science, pages 1{69. Springer-Verlag, 1979.[3] Maria C.F. Ferreira. Termination of term rewriting. Dissertation, Universiteit Utrecht, FaculteitWiskunde en Informatica, 1995.[4] G�erard Huet and Dallas Lankford. On the uniform halting problem for term rewriting systems.Report no. 283, INRIA Rocquencourt, 1978.[5] Pierre Lescanne. On termination of one rule rewrite systems. Theoretical Computer Science,132:395{401, 1994.[6] Grzegorz Rozenberg and Arto Salomaa. Cornerstones of Undecidability. Prentice Hall, 1994.[7] Hans Zantema. Total termination of term rewriting is undecidable. Journal of Symbolic Com-putation, 20:43{60, 1995.

