Fundamenta Informaticae 83(2), 1998, 201-209 1
I0S Press

Termination of graph rewriting is undecidable*

Detlef Plump

Fachbereich Mathematik und Informatik
Uniwversitat Bremen

28334 Bremen, Germany

det@informatik.uni-bremen.de

Abstract. It is shown that it is undecidable in general whether a graph rewriting system
(in the “double pushout approach”) is terminating. The proof is by a reduction of the Post
Correspondence Problem. It is also argued that there is no straightforward reduction of the
halting problem for Turing machines or of the termination problem for string rewriting systems
to the present problem.

Keywords: graph rewriting, termination, Post Correspondence Problem

1. Introduction

In 1978, Huet and Lankford showed that it is undecidable in general whether a term rewriting
system is terminating, that is, whether every computation of a system eventually halts [4]. More-
over, their proof implies that termination of string rewriting systems is undecidable. In the present
paper, it is shown that termination of graph rewriting systems—in the so-called double pushout
approach [2, 1]—is undecidable, too.

Huet and Lankford simulated Turing machines by term rewriting systems such that a given
machine halts on all inputs if and only if the corresponding term rewriting system terminates for
all terms. Thus, they obtained a reduction of the uniform halting problem for Turing machines to
the termination problem for term rewriting systems. In the framework of graph rewriting, however,
a straightforward reduction of the halting problem or of the termination problem for string rewriting
is not possible. In both cases, the problem is caused by cyclic graphs. Consider, for instance, the
string rewrite rule ab — ba which may be translated into the following graph rewrite rule for
edge-labelled graphs:

a a
o——oi>o - A—o——o

Clearly, the string rewriting system {ab — ba} is terminating, that is, its rule can be applied
to a string only finitely often. In contrast, the graph rewriting system consisting of the above rule
does not terminate as it admits the following infinite rewrite sequence of cyclic graphs:

*Part of this research was performed while the author was on leave at CWI, Amsterdam, supported by a grant of
the HCM network EXPRESS.

O e e e

The same problem arises when Turing machines are simulated by graph rewriting. An example
is a Turing machine doing nothing else than moving its head one cell to the right after reading
the symbol a. This machine obviously terminates for all input strings. But when translated into a
graph rewriting system (analogously to the translation of string rewriting systems sketched above),
a cyclic “tape” labelled with a’s will issue an infinite rewriting.

The halting problem for Turing machines easily can be reduced to the termination problem for
graph rewriting on well-formed graphs representing Turing machine configurations. Likewise, there
is a straightforward reduction of the termination problem for string rewriting to the termination
problem for graph rewriting on “string graphs”. Undecidability of termination for these restricted
graph classes, however, does not imply that termination is undecidable for general graph rewriting,
that is, for graph rewriting on arbitrary graphs.

Therefore, in this paper, the Post Correspondence Problem (PCP) is reduced to the problem of
deciding whether a given graph rewriting system is terminating. The basic idea of the encoding of
the PCP is similar to the idea behind reductions of the PCP to the termination problem for term
rewriting systems, as given by Lescanne [5], Zantema [7] and Ferreira [3]. But the encoding by graph
rewriting is more involved as the non-linear rules used in those papers do not have counterparts in
graph rewriting systems.

The rest of this paper is organized as follows: Section 2 contains a brief review of graph rewriting
systems, in Section 3 the main result is proved, and Section 4 concludes by stating an undecidability
result following from the proof of the main result.

2. Graph rewriting

Below the double pushout approach to graph rewriting is briefly reviewed. For a comprehensive
survey, the reader may consult [1] or [2].

A label alphabet ¥ = (Xy,Xg) is a pair of finite sets of vertex labels and edge labels. A graph
over ¥ is a system G = (Vg, Eg, sq, tag, lg, mqg) consisting of two finite sets Vi and E¢ of vertices
(or nodes) and edges, two source and target functions sg,tq: Eq — Vg, and two labelling functions
lglVG — Xy and mea:Eq — YE.

Given two graphs G and H, G is a subgraph of H, denoted by G C H, if Vg and Eg are
subsets of Vi and Ep, respectively, and if s, tg, lg and mg are restrictions of the corresponding
functions in H. A graph morphism f:G — H between two graphs G and H consists of two functions
fviVg = Vg and fg: Eq — Eg preserving sources, targets and labels, that is, sy o fg = fv o sg,
tgofg=fvotg,lgo fv =1g and mg o fg = mg. The morphism f is an isomorphism if fy and
fr are bijective. In this case G and H are isomorphic, which is denoted by G = H.

A rule r = (L O K C R) consists of three graphs L, K and R such that K is a subgraph of
both L and R. The graphs L and R are the left- and right-hand side of r, and K is the interface.
Given a graph G, a graph morphism f: L. — G satisfies the gluing condition if the following holds:

Dangling condition. No edge in G — f(L) is incident to any node in f(L) — f(K).
Identification condition. For all distinct items =,y € L, f(z) = f(y) only if z,y € K.!

Given two graphs G and H, and a set of rules R, there is a direct derivation® from G to H
based on R, denoted by G =% H, if there is a rule r = (L D K C R) in R and a graph morphism
f: L — @G satisfying the gluing condition, such that H is isomorphic to the graph M constructed
as follows:

!This condition is understood to hold separately for nodes and edges.
2See [1, 2] for an equivalent definition by a “double pushout” of graph morphisms.

1. Remove all nodes and edges in f(L) — f(K) to obtain a subgraph D of G.

2. Add disjointly to D all nodes and edges in R — K to obtain M, where all added items keep
there labels and where the source of an edge e in R — K is defined by

spr(e) = { fv(sr(e)) ifsg(e) € Vi,

sr(e) otherwise.

The target tas(e) is defined analogously.

Given some n > 0, a derivation of length n from G to H based on R is a sequence of the form
G =Gy =r Gy =R ... 2R G, = H. The relation = is defined as follows: G =, H if there
exists a derivation of length n from G to H based on R. The relation =% (=7}) is defined by:
G =% H (G =} H) if there is some n > 0 (n > 0) such that G =7, H.

A graph rewriting system G = (X, R) consists of a label alphabet 3 and a finite set R of rules
with graphs over 3. The system G is terminating if there does not exist an infinite rewrite sequence
of the form Gy =r G1 =% ...

3. Undecidability of termination
This section is devoted to the proof of the main result, which is stated next.
Theorem 3.1. It is undecidable in general whether a graph rewriting system is terminating.

In what follows, Theorem 3.1 is proved by reducing the Post Correspondence Problem (PCP)
to the problem of deciding whether a given graph rewriting system is terminating. Every instance
of the PCP will be encoded as a graph rewriting system that is non-terminating if and only if the
given instance has a solution.

Recall that the PCP is the problem to decide, given a nonempty list

L={(c1,61)s-..,(an,Bn))

of pairs of words over some finite alphabet I', whether there exists a sequence i1,...,%; of indices
such that o;, ...;, = B;, ... B;,. The list £ is an instance of the PCP, and a sequence iy,. ..,
with the above property is a solution of this instance. It is well-known that it is undecidable in
general whether an instance of the PCP has a solution [6].

In the following encoding of the PCP, a string a; . .. a,, (with m > 0) will be encoded as a graph
consisting of m consecutive edges labelled by ay,...,am:

ay a2 am
*——0 - 6—0

Such a graph will be depicted also as follows:

ai...am

*—0 - 6—0

Let now £ = ((a1,61),...,(an, Bn)) be an arbitrary instance of the PCP. It is assumed that
for each pair (o, 5;), not both «; and (3; are empty words. (The PCP with this restriction clearly
remains undecidable.) Construct the graph rewriting system G(£) = (£, R) as follows: ¥y =
{o,L,1}, S = T + {1,...,n} + {LLILIII}? and R = Ry U Ry UR3 URy, where Ry,..., R4 are
defined below.

3Here + denotes the disjoint union of sets.

Ry contains the rules?

a
I M.ellee- o Loy
ol
b
11 ol o... 0oz
fori=1,...,n, where o; = a7 ...

Ry contains the rules

U

Xe

N

7 Ic><
Xeo—0

II ey

111 ez

. I IT . I I e
coteal @ | 5 ko] € fxetmel@”
I e 11 e
fori=1,...,n.
R3 contains the rules
a
, Il ey oy 1,6 0. ooy
1 I I
X 0—=o D |xe C |xe
= - ay p
1] @2 [I pe—e: -- e—0z
fori=1,...,n, where o; = a; ... ap.
R4 contains the following rule:
I IT ,ey oy I IT ey
ol R oo
111 ez oz 111 ez

Now the task is to show that the instance £ has a solution if and only if G(£) is not terminating.
The “only if”-direction, which is the easier part, is given by the next lemma. Three further lemmas

will be needed to show the converse.

Lemma 3.1. If £ has a solution, then G(L) is not terminating.

Proof:
If iy, .
R
. > -0.--0—-o
ol
III .\——. .. .—»/.
Oy ey,
=,
R
I 11 > o - o—:o
Sodl
III .\——. e .—»/.
Qi iy

.., i) is a solution of £, then G(L£) admits the following cyclic derivation:

In the following pictures, x, y and z are node names which are used to depict subgraph inclusions.

In the following, a node labelled with 1 or r is called a control node. As each rule in R has a
unique control node in its left- and right-hand side, a direct derivation G =% H will be considered
as an application of a rule “to a control node”, and the images of the left- and right-hand control
node in G and H will be considered as “the same” node (although the labels may be different).

Lemma 3.2. Every infinite rewrite sequence over G(L) contains a control node to which the rule
in Ry is applied infinitely often.

Proof:

It suffices to show that the system G° = (3, R — R,4) is terminating. For then every infinite
rewrite sequence over G(L) contains infinitely many applications of the rule in R4. As no rule in
R increases the number of control nodes, it follows that there is a control node to which the rule
in R4 is applied infinitely often.

To show that G© is terminating, suppose the contrary. Call an edge a I'-edge if it is labelled
with a symbol from I'.

Claim: In every rewrite sequence over G, no I'-edge produced by R3 is ever removed.

Proof: Given a step G =g, H, there is no directed path in H from a node labelled with r to
the source node of any I'-edge produced by the step. Hence none of these edges can be removed
by applying a rule to H. Moreover, it is easy to see that all rules in Ry U Ro U R3 preserve the
absence of a directed path from a node labelled with r to a fixed I'-edge. Thus none of the I'-edges
produced by G =, H can be removed in a future step.

By the claim and the fact that the rules in R{ UR5 do not produce I'-edges, all I'-edges removed
by an Ri-step in a rewrite sequence over G° have been present already in the start graph of the
sequence. It follows that every infinite rewrite sequence over G° contains only a finite number of
Ri-steps: each of these steps removes some I'-edges while neither Ry nor Ry produces I'-edges.
Hence, if G© is not terminating, the system (3, Ry U R3) must admit an infinite rewrite sequence.
But this is impossible since all rules in Ry UR3 decrease the number of nodes and edges with label
in {r} U{l,...,n}. Thus G° is terminating. This concludes the proof of Lemma 3.2. 0

Lemma 3.3. If an infinite rewrite sequence over G(L) starts from a connected graph, then all
graphs in the sequence contain exactly one control node.

Proof:
For every graph G, call a subgraph C an indez chain of length k, k > 0, if C' has the form

e . ool

where iy, ..., i € {1,...,n} and where only the control node may be incident to edges not belonging
to C. The following claim follows immediately from the shape of the rules in R.

Claim: Let G =g H be a direct derivation and C be an index chain of length k in G. Then
(1) C is (up to isomorphism) also an index chain in H, or
(2) C is transformed into an index chain of length k + 1, or
(3) G =x H is an application of a rule from Ro to the control node in C.

Let now Gy =xr G1 =% ... be an infinite derivation such that Gy is connected. Since all
rules in R preserve the number of control nodes, it suffices to show that there is some graph in
the rewrite sequence that contains exactly one control node. By Lemma 3.2, there is a control
node ¢ to which the rule in R4 is applied infinitely often. Hence there are 0 < s < ¢ such that
Gs =r, Gsy1 =>7JE Gy =Rr, Gi+1, where Gy =x, Gsy1 and Gy =g, Gi+1 are applications of Ry
to ¢ and where G54 :>7'; G does not contain an application of R4 to ¢. By the shape of the rule
in R4, ¢ belongs to an index chain of length 0 in G4,;. Moreover, there must be some s’ with
s < ' <t such that Gy =5, Gy 1 is an application of Rs to ¢. Hence, by the above observation,
¢ belongs to an index chain in Gy. By the shape of the rules in Ro, if ¢ is connected with another
control node d in Gy, then all nodes of the index chain containing ¢ are connected with d via a

path that does not contain ¢. But this contradicts the definition of an index chain. That is, ¢
cannot be connected with another control node. Since GG is connected and all rules in R preserve
connectedness, it follows that ¢ is the only control node in G . O

Lemma 3.4. If G(L) is not terminating, then there is an infinite rewrite sequence that starts with
a derivation of the form

Qjp Oy Qjp - Qjm

1 e—e - - o—re II e ® ° °
I CI —> I CI
o Ra o

11 &—=e --- 6—=¢ I ® ® ® ®

/311 Bim Bh' Bim
m .) I II _e
R: .L,. . .ﬁ,o-@(

1

II1 e
.) I II _e
= edle... .m,._@<
IIT ®

a]l 'ajm
11 ; o @ ;

where m > 1 and j1,...,jm € {1,...,n}.

Proof:

Since the left- and right-hand sides of all rules in R are connected, every direct derivation G = H
takes place within some connected component C of G and transforms C' into a connected component
of H. Therefore every infinite rewrite sequence over G(L£) contains a connected component which is
subject to infinitely many rule applications. By filtering out all rule applications to this component
and restricting all graphs to this component, one obtains an infinite rewrite sequence of connected
graphs. By Lemma 3.2, from some point on this sequence has the form G| =x, Hi =%¢ G2 =g,
Hy =% ... with R® = R — R4. By Lemma 3.3, all graphs in this sequence contain exactly
one control node. Thus, taking into account the shape of the rules in R, the derivation Gy =5,
H, =%o Gy must be of the form Gy =%, H; :>%1 P =g, Q) :>%3 G, where m > 1 and where
G1, Hy, P;, Q1 and G5 are as in the above picture. (The control node to which R4 is applied in
G can be subject to an R4-application in G only if H; =75 G2 is as depicted. Note that, by the
dangling condition for direct derivations, nodes being removed are incident only to edges having a
preimage in the left-hand side of the applied rule.) O

Using Lemma 3.1 and 3.4, it is straightforward to prove the main result.

Proof of Theorem 3.1:

By the undecidability of the Post Correspondence Problem, it suffices to show that the instance £
has a solution if and only if the graph rewriting system G(L£) is not terminating. Lemma 3.1 shows
the “only if”-direction of this equivalence. For the converse, suppose that G(£) is not terminating.
Then, by Lemma 3.4, there is an infinite rewrite sequence containing a graph of the form

w
A

II _e - @ ;

e L JE °

~~
w

where w is a some word over I'. By the shape of the rules in R, the next steps in the sequence have
the form

w w
I II _e——me - o—:o I II _e ® ° ;
o—{) ?j o—{ :)
Iy e—-eo .- ¢——=o I e ® ° ®
w w
. . . II
R: .i». - .&,._I@><‘
1

1 e

where k > 1 and i1,...,i; € {1,...,n}. By the shape of the rules in Ry, this implies o, ..., =

w = B, ...0B;,. Thus, i1,...,1 is a solution of L. O

4. Conclusion

By a reduction of the Post Correspondence Problem, it has been shown that termination of graph
rewriting is undecidable in general. Somewhat surprisingly, the possible presence of cycles in
graphs prevents a straightforward reduction of the halting problem for Turing machines or of the
termination problem for string rewriting systems to the present problem.

It is worth noting that the given reduction of the PCP also shows the undecidability of the
following problem. Call a graph rewriting system cyclic if it admits a derivation in which some
graph occurs twice. (So every cyclic system is non-terminating, but the converse does not hold in
general.) From the proof of Theorem 3.1 one obtains the following result.

Theorem 4.1. It is undecidable in general whether a graph rewriting system is cyclic.

For, the proof of Lemma 3.1 shows that the system G(L£) is cyclic whenever an instance £ of the PCP
has a solution, and the premise of Lemma 3.4—which requires that G(£) is not terminating—clearly
holds true if G(L£) is cyclic.

Acknowledgement. The author wishes to thank Jiirgen Miiller for discussions about termination
of graph rewriting, and Annegret Habel for comments on a previous version of this paper.

References

1]

Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel, and Michael
Lowe. Algebraic approaches to graph transformation — Part I: Basic concepts and double
pushout approach. In Grzegorz Rozenberg, editor, Handbook of Graph Grammars and Com-
puting by Graph Transformation, volume 1, chapter 3, pages 163-245. World Scientific, 1997.
Hartmut Ehrig. Introduction to the algebraic theory of graph grammars. In Proc. Graph-
Grammars and Their Application to Computer Science and Biology, volume 73 of Lecture Notes
in Computer Science, pages 1-69. Springer-Verlag, 1979.

Maria C.F. Ferreira. Termination of term rewriting. Dissertation, Universiteit Utrecht, Faculteit
Wiskunde en Informatica, 1995.

Gérard Huet and Dallas Lankford. On the uniform halting problem for term rewriting systems.
Report no. 283, INRIA Rocquencourt, 1978.

Pierre Lescanne. On termination of one rule rewrite systems. Theoretical Computer Science,
132:395-401, 1994.

Grzegorz Rozenberg and Arto Salomaa. Cornerstones of Undecidability. Prentice Hall, 1994.
Hans Zantema. Total termination of term rewriting is undecidable. Journal of Symbolic Com-
putation, 20:43-60, 1995.

