

Term Rewriting Systems

Exercise Sheet 1

Dr. rer. nat. Rafael Peñaloza/Marcel Lippmann Summer Semester 2014

Exercise 1

Consider the reduction system (M, \rightarrow) with $M = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, C_1, C_2, C_3, C_4, D, E\}$ and $A \subseteq M \times M$:

•
$$A_1 \to B_1$$
, $A_1 \to B_2$, $A_2 \to B_1$, $A_2 \to B_2$, $A_3 \to B_3$, $A_4 \to B_3$,

•
$$B_1 \to C_1$$
, $B_2 \to C_2$, $B_2 \to C_3$, $B_3 \to C_1$, $B_3 \to C_2$, $B_3 \to C_3$, $B_3 \to C_4$,

•
$$C_3 \rightarrow E$$
, $C_4 \rightarrow E$, and

•
$$D \rightarrow C_4$$
.

Answer the following questions.

- a) Which of the following properties are satisfied by \rightarrow ? Justify your answer.
 - i) finite
 - ii) symmetric
 - iii) antisymmetric
 - iv) reflexive
 - v) irreflexive
 - vi) transitive
- b) Describe the following *closures*:

$$\stackrel{=}{\rightarrow}$$
, $\stackrel{+}{\rightarrow}$, $\stackrel{*}{\rightarrow}$, and \leftrightarrow .

Exercise 2

Let \rightarrow be the *symbolic differentiation relation* introduced in the lecture.

- a) Compute the *normal forms* of the following terms:
 - i) $D_X(((X * X) * X) + (X * X))$, and
 - ii) $D_X((X * Y) + (Y * Y)).$
- b) Prove that \rightarrow is *terminating*.

Exercise 3

In the lecture, a *group* was defined by the following identities:

$$(x \circ y) \circ z \approx x \circ (y \circ z) \tag{G1}$$

$$e \circ x \approx x$$
 (G2)

$$i(x) \circ x \approx e$$
 (G3)

a) Prove that groups satisfy the property that e is a right unit, i.e.

$$x \circ e \approx x$$
 (G2')

by showing that $x \circ e$ can be transformed to x using the identities G1, G2 and G3.

b) Consider the following identity:

$$x \circ i(x) \approx e$$
 (G3')

Prove that G1, G2 and G3' do not imply G2'.

Hint: Give a model of G1, G2 and G3' in which G2' does not hold; such a model exists with only two elements.

Exercise 4

Consider the following identities:

$$(x \circ y) \circ z \approx x \circ (y \circ z) \tag{R1}$$

$$(x \circ y) \circ x \approx x \tag{R2}$$

Prove or refute whether the following identities are implied by R1 and R2.

- a) $(x \circ x) \approx x$
- b) $(x \circ y) \circ z \approx x \circ z$