

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 3

Dr. rer. nat. Rafael Peñaloza/Marcel Lippmann Summer Semester 2014

Exercise 10

Let $\textbf{ack}: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ be the Ackermann function, i.e.

$$\mathbf{ack}(n,m) = \begin{cases} m+1 & \text{if } n = 0, \\ \mathbf{ack}(n-1,1) & \text{if } m = 0, \\ \mathbf{ack}(n-1,\mathbf{ack}(n,m-1)) & \text{otherwise.} \end{cases}$$

Choose an appropriate order on pairs $(n, m) \in \mathbb{N} \times \mathbb{N}$ and use well-founded induction to prove that the function **ack** is well-defined, i.e. for each pair of non-negative integers it determines a unique value.

Exercise 11

Prove Lemma 2.21 from the lecture: If $>_A$ is a strict order on A, and $>_B$ is a strict order on B, then the lexicographic product $>_{A \times B}$ is a strict order on $A \times B$.

Exercise 12

Prove that, for a strict order \succ , its induced multiset order \succ_{mul} is a strict order.

Exercise 13

Let \succ be a strict, decidable order on a finite set A.

- a) Show that the induced multiset order \succ_{mul} is decidable.
- b) Design a simpler decision procedure for the case when \succ is a total strict order on A.

Exercise 14

Let (A, \succ) be a strict order. Prove or refute the following claims.

- a) If A has a smallest element, then \succ is well-founded.
- b) If every non-empty subset of A has a smallest element, then \succ is well-founded.
- c) If \succ is well-founded, then, for each element $a \in A$, there are only finitely many b with $a \succ b$.
- d) If \succ is well-founded, then, for each element $a \in A$, there is an $n_a \in \mathbb{N}$ such that each \succ -path starting at a is of length at most n_a .
- e) If \succ is well-founded, then each non-empty subset of A has a smallest element.