

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 9

Dr. rer. nat. Rafael Peñaloza/Marcel Lippmann Summer Semester 2014

Exercise 39

For each of the following pairs (s, t) of terms, check whether $s \ge_{emb} t$.

- a) $f(x) \ge_{emb} a$
- b) $f(b) \ge_{emb} a$
- C) $g(g(x, y), g(a, f(z))) \ge_{emb} g(y, g(a, z))$

Exercise 40

Prove the following claims:

a) The reduction relation $\stackrel{*}{\rightarrow}_{R_{emb}}$ given by the TRS

$$R_{\text{emb}} := \{f(x_1, ..., x_n) \to x_i \mid n \ge 1, f \in \Sigma^{(n)} \text{ and } 1 \le i \le n\}$$

and the homeomorphic embedding \succeq_{emb} are identical, i.e. $s \xrightarrow{*}_{R_{emb}} t$ iff $s \succeq_{emb} t$.

- b) \geq_{emb} is a partial order.
- c) \geq_{emb} is well-founded. (Prove this without using Kruskal's Theorem.)

Exercise 41

In the proof of Thm. 5.32, we have used that \geq_{emb} is a well-partial-order. Explain why \geq_{emb} being a well-founded partial order would not have been sufficient.

Exercise 42

In lecture, it was shown that the termination of the TRS $R := \{f(f(x)) \rightarrow f(g(f(x)))\}$ cannot be proved using a simplification order.

- a) Prove termination using the interpretation method.
- b) Is there a polynomial order that can be used to prove termination of R?

Exercise 43

Prove that polynomial orders are simplification orders if the following properties are satisfied.

• The underlying signature Σ contains only function symbols of arity at least 2.

• The domain A does not contain 1, i.e. $A \subseteq \mathbb{N} \setminus \{0, 1\}$.

Are those conditions necessary?

Exercise 44

Prove the first part of Thm. 5.38 of the lecture: Let Σ be a finite signature, $s, t \in \mathcal{T}(\Sigma, V)$, and $>_{lpo}$ be a lexicographic path order. We can decide whether $s >_{lpo} t$ in time polynomial in |s| and |t|.

Hint: First, show that the condition

$$s >_{\text{lpo}} t_j$$
 for all j with $1 \le j \le n$

in (LPO2c) can be replaced with

 $s >_{lpo} t_j$ for all j with $i \le j \le n$ for i such that $s_1 = t_1 \dots s_{i-1} = t_{i-1}$, and $s_i >_{lpo} t_i$.

Use this modified condition to prove that the question whether $s >_{lpo} t$ holds can be decided in time $O(|s| \cdot |t|)$.