Exercise 12

Let \(\Sigma := \{a, b\} \), \(M := \{0, 1, 2\} \), and let \(\circ : M \times M \to M \) be defined as \(x \circ y := (x + y) \mod 3 \). We define mappings \(\Phi, \Phi' : \Sigma^* \to M \) by setting \(\Phi(w) := |w| \mod 3 \) and \(\Phi'(w) := |w|_a \mod 3 \), where \(|w| \) denotes the length of \(w \) and \(|w|_a \) the number of occurrences of the symbol \(a \) in \(w \).

a) Show that both \(\Phi \) and \(\Phi' \) are monoid homomorphisms from \((\Sigma^*, \cdot, \varepsilon)\) into \((M, \circ, 0)\).

b) For each of the languages \(\Phi^{-1}(\{0, 2\}) \), \(\Phi^{-1}(\{1\}) \) and \((\Phi')^{-1}(\{1\}) \) devise a finite automaton that recognises the language.

Exercise 13

Let \(\Sigma \) be an alphabet, \(L \subseteq \Sigma^* \) a language, and \((M, \circ, 1)\) a monoid. Prove that \(L \) is accepted by \((M, \circ, 1)\), if and only if \(\overline{L} \) is also accepted by \((M, \circ, 1)\).

Exercise 14

Determine the syntactic monoid of the language described by \(a^* ba^* \).

Exercise 15

Let \(L \subseteq \Sigma^* \), and \(\approx \) be an equivalence relation on \(\Sigma^* \). Consider the following property:

For all \(u, v \in \Sigma^* \), if \(u \in L \) and \(u \approx v \), then \(v \in L \). \((\ast)\)

a) The proof of Corollary 1.13 from the lecture depends on the fact that the syntactical congruence \(\sim_L \) has property \((\ast)\). Prove this.

b) Show that \(\sim_L \) is the coarsest congruence relation with property \((\ast)\).

c) Show that the Nerode right congruence \(\rho_L \) is the coarsest right congruence with property \((\ast)\).

Note: An equivalence relation \(\approx_2 \) is coarser than \(\approx_1 \) if for every \(x, y \), \(x \approx_1 y \) implies \(x \approx_2 y \). (In particular, \(\approx_2 \) has at most as many equivalence classes as \(\approx_1 \).)

Exercise 16

Show that any submonoid of a finite group is also a group.
Exercise 17
Let V be an M-variety. Show that $L(V)_\Sigma$ is closed under union without using Thm. 1.22 from the lecture.

Exercise 18
Let Σ be an alphabet. Prove or refute the following claims:

a) Every regular language $L \subseteq \Sigma^*$ is accepted by its syntactic monoid.

b) If $L \subseteq \Sigma^*$ is accepted by a finite group, then the syntactic monoid of L is a finite group.

c) For every regular language $L \subseteq \Sigma^*$, the syntactic monoid M_L is the smallest monoid accepting L; i.e. for every monoid M accepting L, we have $|M_L| \leq |M|$.

d) For a word $w = a_1 \ldots a_n$, let \overline{w} denote the mirror image of w, i.e. $\overline{w} = a_n \ldots a_1$. For a language $L \subseteq \Sigma^*$, we define $\overline{L} := \{ \overline{w} \mid w \in L \}$. **Claim**: If the minimal automaton for L has n states, then the minimal automaton for \overline{L} has also n states.

Exercise 19
Let L_1 be the language over $\{a\}$ described by a^+, and let L_2 be the language over $\{a, b\}$ described by $(a + b)^*b(a + b)^*$.

a) Is there a monoid that accepts both L_1 and L_2?

b) Are the syntactic monoids of those languages isomorphic?

Exercise 20
Let L_1 and L_2 be two languages over the same alphabet Σ that are accepted by the same monoid $(M, \circ, 1)$. Prove or refute the following statements:

a) M accepts $L_1 \cap L_2$.

b) M accepts $L_1 \cup L_2$.

c) M accepts $L_1 \cdot L_2$.