

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Automata and Logic

Exercise Sheet 5

Dr. rer. nat. Daniel Borchmann / Dipl.-Math. Francesco Kriegel Summer Semester 2015

Exercise 29

Let V be the class of all finite semigroups S such that for all idempotent elements $e \in S$, we have Se = e. Show that V is an S-variety ultimately defined by

$$yx^n = x^n \qquad (n \ge 1).$$

Exercise 30

Let $\Sigma \coloneqq \{a, b, c, d\}$.

a) For $L \subseteq \Sigma^*$ with

 $L := \{ w \in \Sigma^* \mid w \text{ starts with } a \text{ or } b \} \cap \{ w \in \Sigma^* \mid |w| \ge 3 \text{ and } w \text{ starts and ends with the same symbol} \},\$

give a quantifier-free formula ϕ using the signature $\{Q_a, Q_b, Q_c, Q_d, <, \min, \max, s, p\}$ such that $L(\phi) = L$.

b) Let

 $\phi \coloneqq \neg(\neg Q_a(s(s(p(s(\min))))) \lor (s(\min) < p(p(\max)))).$

Use the method described in the proof of Prop. 2.11 to describe $L(\phi)$ as a Boolean combination of languages from the set $\{u\Sigma^* \mid u \in \Sigma^*\} \cup \{\Sigma^*u \mid u \in \Sigma^*\}$.

Exercise 31

Let Σ be an alphabet. A language $L \subseteq \Sigma^*$ is called *definite* for Σ if there exists an $n \in \mathbb{N}$ such that we have for all $w \in L$:

if
$$w = uv$$
 with $|u| = n$ then $u\Sigma^* \subseteq L$.

Show that $L \subseteq \Sigma^*$ is definite for Σ iff *L* is a Boolean combination of languages of the form $\{w\Sigma^* \mid w \in \Sigma^*\}$.

Exercise 32

Let $\Sigma := \{0, 1\}^k$. Show that the following statements are equivalent:

- L is definite for Σ.
- There exists a quantifier-free closed first-order formula ϕ over the signature $\{P_1, \dots, P_k, <, \min, s\}$ with $L(\phi) = L \setminus \{\varepsilon\}$.

Exercise 33

Let Σ , Γ be two alphabets, and let $L \subseteq \Sigma^*$. Prove or refute the following claims:

- a) $L \in \mathsf{SF}_{\Sigma} \implies L \in \mathsf{SF}_{\Sigma \cup \Gamma}$
- b) $L \in SF_{\Sigma \cup \Gamma} \implies L \in SF_{\Sigma}$

Exercise 34

For $\Sigma := \{a, b\}$, check whether the following languages are star-free:

- a) $L_1 := (ab)^*$
- b) $L_2 := \{ w \mid |w|_a = 3k \text{ for some } k \in \mathbb{N} \}$

c)
$$L_3 := a(aba)^*b$$

Use Thm. 3.6 from the lecture or give a star-free description of the language.