

Automata and Logic

Exercise Sheet 7

Dr. rer. nat. Daniel Borchmann / Dipl.-Math. Francesco Kriegel Summer Semester 2015

Exercise 39

Let $\Sigma := \{a, b\}$, and $L \subseteq \Sigma^*$ be defined by the regular expression $(a^*bb^*)^*$. Show that

$$\lim L = \{ \alpha \in \Sigma^{\omega} \mid \text{if } \alpha(i, i) = a, \text{ then there is a } j > i \text{ with } \alpha(j, j) = b \}.$$

Exercise 40

Give Büchi automata that recognise the following ω -regular languages over the alphabet $\Sigma := \{a, b, c\}$:

- a) $L_1 := \{ \alpha \in \Sigma^{\omega} \mid \exists i \in \mathbb{N} : \alpha(i, i+2) = abc \};$
- b) $L_2 := \{ \alpha \in \Sigma^{\omega} \mid \{ i \in \mathbb{N} \mid \alpha(i, i+2) = abc \} \text{ is infinite} \};$ and
- c) $L_3 := (a^+b^+c^+)^{\omega}$.

Exercise 41

- a) Show that the construction used in the proof of Lemma 4.7.1 does not work for automata whose initial state is reachable from another state.
- b) Complete the proof of Lemma 4.7 from the lecture by showing the following:

If $L_1, L_2 \subseteq \Sigma^{\omega}$ are Büchi recognisable, then $L_1 \cup L_2$ is Büchi recognisable.

Exercise 42

Let Σ be an alphabet, and $L, L_1, L_2 \subseteq \Sigma^*$. Prove or refute:

- a) \bullet $(L_1 \cup L_2)^\omega \subseteq L_1^\omega \cup L_2^\omega$
 - $(L_1 \cup L_2)^{\omega} \supseteq L_1^{\omega} \cup L_2^{\omega}$
- b) $\lim(L_1 \cup L_2) \subseteq \lim L_1 \cup \lim L_2$
 - $\lim(L_1 \cup L_2) \supseteq \lim L_1 \cup \lim L_2$
- c) $L^{\omega} \subset \lim L^{+}$
 - $L^{\omega} \supseteq \lim L^{+}$

d) •
$$\lim(L_1 \cdot L_2) \subseteq L_1 \cdot L_2^{\omega}$$

•
$$\lim(L_1 \cdot L_2) \supseteq L_1 \cdot L_2^{\omega}$$

Exercise 43

Let $\Sigma := \{a, b\}$, and $L \subseteq \Sigma^{\omega}$ be the ω -language recognised by the following Büchi automaton:

Find a number $n \geq 1$ and regular languages U_1 , V_1 , ..., U_n , $V_n \subseteq \Sigma^*$ such that

$$\bigcup_{i=1}^n U_i \cdot V_i^{\omega} = L.$$