

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

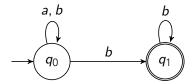
Automata and Logic

Exercise Sheet 9

Dr. rer. nat. Daniel Borchmann / Dipl.-Math. Francesco Kriegel Summer Semester 2015

Exercise 48

Let $\Sigma := \{a, b\}$, and $L \subseteq \Sigma^{\omega}$ be the ω -language recognised by the following Büchi automaton:



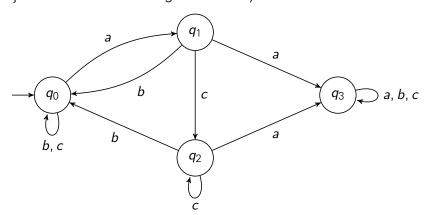
Use the method presented in the lecture to construct a Büchi automaton that recognises the language $\Sigma^{\omega} \setminus L$.

Exercise 49

Prove that for every ω -regular language L, there is a Büchi automaton \mathcal{A} with $L_{\omega}(\mathcal{A}) = L$ such that from every state q of \mathcal{A} , there are at most two transitions using the same alphabet symbol.

Exercise 50

Let $\Sigma := \{a, b, c\}$. Consider the following transition system:



We derive four Muller automata A_1 , A_2 , A_3 , and A_4 by selecting the sets of final states \mathcal{F}_1 , \mathcal{F}_2 , \mathcal{F}_3 , and \mathcal{F}_4 as follows:

a)
$$\mathcal{F}_1 := \{ \{q_0, q_3\}, \{q_3\} \};$$

b)
$$\mathcal{F}_2 := \{ \{q_0, q_1\}, \{q_2\} \};$$

- c) $\mathcal{F}_3 \coloneqq \{\{q_0, q_1, q_2\}\};$ and
- $\text{d) } \mathcal{F}_4 := \{ \{q_0\}, \{q_0, q_1\}, \{q_2\}, \{q_0, q_1, q_2\} \}.$

Determine the ω -languages $L_{\omega}(\mathcal{A}_1)$, $L_{\omega}(\mathcal{A}_2)$, $L_{\omega}(\mathcal{A}_3)$, and $L_{\omega}(\mathcal{A}_4)$.