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Motivation and Context

In automata theory and formal languages one is interested in classes of lan-
guages und their properties. A formal language is a set L C ¥*, i.e. a set
of words over a given alphabet ¥. X is usually finite. A class of formal
languages K assigns with each finite alphabet ¥ a set Ky C 2%, i.e. a set of
languages over X..

Given a class K, one is interested in the following questions:

Characterization How can we characterize the languages belonging to the
class?

We are looking for properties P such that:
LeKs iff L CY* and L satisfies P.

Usually one wants to have different equivalent characterizations (au-
tomata, grammars, ...). Some characterizations are better for certain
purposes then other characterizations.

Closure properties Under which operations on languages (intersection,
union, complement, homomorphic images, ...) is the class closed?

Decidability Which problems are decidable for this class?

One assumes that the (usually infinite) languages are given by a finite
representation corresponding to one of the characterizations.
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MOTIVATION AND CONTEXT

The most important classes are collected in the Chomsky hierarchy:

Class Characterization
generated by general Chomsky grammars (transitions u —
Type 0 v where u contains a non—terminal)
accepted by Turing machines
generated by context sensitive grammars (transitions v — v
Type 1 where 1 < |u| < |v])
context
sensitive accepted by Turing machines with a linearly bounded tape
Type 2 generated by context free grammars (transitions X — v
context where X is non-terminal)
free accepted by push—down automata
generated by right linear grammars (transitions X — uY,
Type 3 X — u where X,Y are non—terminal and v is a terminal
regular word)

accepted by a finite automata

Examples of further characterization

Do deterministic machines (automata) yield the same class as non determin-

istic ones?

Type 0
Type 1
Type 2
Type 3

Open

Examples of closure properties

Is the class closed under complementation, i.e. L € Ky ~ ¥*\ L € Kg?

2
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MOTIVATION AND CONTEXT

Type 0 No (complements of recursively enumerable languages
need not to be recursively enumerable)

Type 1 Yes (relatively new result, 1987).

Type 2 No (related to determinism)

Type 3 Yes

Examples of decision problems

Are the word problem and the equivalence problem decidable?

Class weL? Li=L1Ly"
Type 0 undecidable undecidable
Type 1  decidable  undecidable
Type 2  decidable  undecidable
Type 3  decidable decidable

The lecture will mostly concentrate on Type 3 languages. We will look at
subclasses, different characterizations and generalizations to infinite words
and trees. The script is organized in three parts:

1. Regular languages of finite words

As alternative characterizations we will consider:

e Algebraic characterizations

— Every language can be associated with a monoid (syntactic monoid).

— Regular languages are those whose syntactic monoid is finite.
e Logical characterizations

— Logical formulae can define languages.

— There is a logic (monadic second-order logic) that defines the
regular languages.

These characterizations can be used to define subclasses of the class of regular
languages. The most prominent one is the class of star—free languages:
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MOTIVATION AND CONTEXT

e They are defined by formulae of first—order predicate logic.

e Their syntactic monoid is aperiodic.

2. Languages of infinite words

Instead of finite words (finite sequences of letters) one can consider infinite
words (infinite sequences of letters) as input for finite automata. The only
thing that must be changed is the acceptance condition.

e Finite words: after reading the word a final state is reached

e Infinite words: conditions on the states that are reached infinitely often

We will show closure properties, decidability of the emptiness problem and we
will look at the connection to logic. One can obtain interesting decidability
results for logics.

3. Tree languages (or forrests)

Words can be viewed as labeled trees with branching factor < 1.

(@)
abaa = ©
(@)

@

The notion of a finite automaton can be extended to the one of a tree au-
tomaton by allowing for branching > 1. Many results for regular languages
generalize to tree languages. There is again an interesting connection to
logics.
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MOTIVATION AND CONTEXT

The main emphasis will be on applications in logic (decidability results).
Methods are as important as the results! There will be an emphasis on
proofs!
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Chapter 1

Regular languages, finite
monoids and logical formulae

Goal of this chapter is to recapitulate some definitions and results for regular
languages and establish a relationship to monoids and formulae.

1.1 Regular languages and finite automata

Definition 1.1 Let ¥ be a finite alphabet. The class Regy, of regular lan-
gquages over Y is the smallest class such that

e (), {¢} and {a} for a € ¥ are in Regs, (where ¢ is the empty word),

e if L, L, Ly € Regy, then so are LiULy, L1-Ly ={u-v | u € Ly and v €
Ly}, L* ={uy---u, | n>0and u; € L}.

As usual, we will write reqular expressions to describe regular languages.
E.g.: (ab)*a describes ({a} - {b})* - {a}, i.e. words over {a,b} starting and
ending with a, and where in between a’'s and b's alternate.

Because of the definition, regular languages are closed under union, concate-
nation, and Kleene star. To show closure under intersection and complement,
an alternative characterization by finite automata is more appropriate.
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1.1. REGULAR LANGUAGES AND FINITE AUTOMATA

Definition 1.2 A non—deterministic finite automaton A = (Q, 3,1, A, F)
consists of

e a finite set of states @,

a finite alphabet X,

a set of initial states I C @,

a transition relation A C Q) x ¥ x @,

a set of final states F' C Q.

As usual, we will draw graphs to represent automata.

e.g.: @42»
Q={1,2},S={a,b}), I=1{1} (shown by —(1))
A={(1,a,2); (2,6, 1)}, F = {2} (shown by (2)))

A path in the automaton is a sequence qoaiqias . . . a,q, where (¢;_1,a;,¢;) €

A for 1 <7 < n. We will often abbreviate such a path as ¢ Mmqn. The
path is successful if qo € I and ¢, € F.

The automaton A accepts the following language:
L(A) = {w € " | ¢p =4 g, is a successful path in A}.

A language L C ¥* is called recognizable, if there exists a finite automaton
A that accepts L.

Kleene’s theorem says that a language L C X* is recognizable iff it is regular.
We will use this to show that the class of regular languages is closed under
intersection.

Proposition 1.3 If L, L, € Regs, then so is L1 N Ls.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

Proof: Let ./41 = (Ql,E,[I,Al,Fl) and AQ = (QQ,E,]Q,AQ,FQ) be au-
tomata such that Ly = L(A;) and Ly = L(Ay). We define A := (Q; X
(2,5, I} x I, A, F} X Fy) where

A= {((q1, @), a, (¢1. &) | (@1, a,¢)) € Ay and (g2, a,¢5) € Ay}

It is easy to see that

(q1,02) ——a (d,q5) it q ——4, ¢ and g2 — 4, .

Together with definition of initial and final states in A4 this implies w € L(.A)
iff we L(A1> N L(Ag) [

To show the closure under complement, non deterministic automata are not
appropriate.

Note: If A = (Q,%, I, A, F) is non-deterministic, then the automaton A :=

(Q,%,1,A,Q\ F) need not satisfy L(A) ="\ L(A).

E.g: A:=

a
Q={L2}, ¥ ={a}, I={1}
A={(1,a,1);(1,a,2)}, F={1}
L(A) = a*, L(A) = a*, but a* \ L(A) = ()

This construction works if the automaton is deterministic.

Definition 1.4 The automaton A = (Q, %, I, A, F) is called deterministic
iff:

o |I|=1,ie I={q},

e A is functional, i.e. for every ¢ € ) and every a € ¥ there is exactly
one ¢’ € @ such that (¢,a,q') € A.
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1.1. REGULAR LANGUAGES AND FINITE AUTOMATA

Instead of the transition relation A we will often use the transition function.

0: QQxY¥ — @
(g,a) +— ¢ iff (¢,a,¢) € A.

The function § can be extended to words by defining (¢, w) := ¢/, where ¢’ is
the unique state such that ¢ —4 ¢’. We have L(A) = {w € ¥* | (g, w) €

The power set construction can be used to construct a deterministic automa-
ton P(A) from a given non-deterministic automaton A = (Q,3,I, A, F).
We define P(A) := (29,3, ¢,, ¢, F') where:

® (o = I?

e 0'(P,a):={q € Q|3p€ P with (p,a,q) € A},

e F/F:={PCQ|PNF#0}.

It is easy to see that L(A) = L(P(A)) and that P(A) is deterministic.
Proposition 1.5 If L € Regs, then L = ¥*\ L € Regs.

Proof: For L there exists a deterministic automaton A = (Q, %, g, 0, F)
with L = L(A). Thus w € L iff 6(qo,w) € F. This is equivalent to saying
that w € L iff 6(qy, w) € Q\ F. Consequently A = (Q, X, g, 0, Q\ F) accepts
L. .

Minimization of deterministic automata:
For every regular language there is a unique (up renaming of states) minimal
deterministic automaton accepting this language.

Given a deterministic automaton A = (Q, X, qo, 6, F'), one can minimize it as
follows:

1. Remove wunreachable states, i.e. states ¢ € ) such that there is no
w € ¥ with §(q,, w) = q.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

2. Identify equivalent states.

Forge Qlet A, :=(Q,%,q,0, F).
We define:

q ~A q' iff L(Aq) == L(Aq/).

The relation ~ 4 is an equivalence relation. Now identify equivalent
states. This yields the unique minimal automaton.

Alternatively, the minimal automaton can be obtained using the Nerode right
congruence. For a language L C X* we define

uppv iff Vw € &% ¢ (ww € L iff vw € L).
This relation is an equivalence relation, which additionally satisfies:

UPLU ~> UWPLUW (right congruence).

Nerode’s theorem says that a language L is regular iff p;, has a finite index,
i.e. it has finitely many equivalence classes.

We can view these classes as states of an automaton:

for u € ¥*, [u] := {v | upLv} denotes the p, equivalence class of w.

We define A, = (Q, %, qo, 0, F') where

e ():={[u] | ueX*} (finite if L is regular),

d([u], @) := [ua] (independence of representatives!),

F :={[u] | u € L} (independence of representatives!).

For a regular language L, A is the minimal deterministic automaton for L.
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

1.2 Regular languages and finite monoids

A monoid (M, ey, 1)) consists of a non empty set M, an associative binary
operation e, and a unit element 1,; € M, i.e. the following must be satisfied:

Ve,yz€ M@ (veyy)eyz=uxey (yey z)  (associative),
Vee M : lyoyr=xeyly==x (unit element).

We will often write just M instead of (M, ey, 1)) and we will often omit the
index M. A monoid (M, ey, 1) is finite iff M is finite.
Let M, N be monoids. The mapping ¢ : M — N is a homomorphism iff:

o p(reyy)=d(x)en o(y),
[ J (b(]-M) - lN.

Example 1.6 For an alphabet X, the set ¥* together with concatenation as
binary operation and the empty word € as unit element is a monoid.

3* is called the free monoid over Y since it satisfies the following universal

property:
For any monoid M and any mapping f : ¥ — M, this mapping can uniquely
be extended to a homomorphism ¢ : ¥* — M with ¢|yx = f.

In fact: ¢(€) ;= 1y and ¢(ay...ay) == ¢(ar) ey ... oy d(ay)
This means: homomorphisms from ¥* — M can be defined by mappings

f:X—=>M

Homomorphisms from ¥* into a monoid M can be used to define languages
(i.e. subsets of ¥*).

Definition 1.7 Let M be a monoid, ¥ an alphabet and ¢ : ¥* — M a
homomorphism. Every subset N of M defines a subset of ¥*:

¢~ (N) = {w € ¥ | ¢(w) € N}

The language L C X* is accepted by M iff there is N C M and a homomor-
phism ¢ : ©* — M such that L = ¢! (N).
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

Proposition 1.8 Let L C ¥*. Then the following are equivalent:

1. L is accepted by a emphasize monoid.

2. L is regular.

Proof:

“1 ~ 2” The monoid itself can be viewed as a finite automaton.

Let ¢ : ©* — M be a homomorphism and L = ¢~'(N) for N C M
where M is a finite monoid. The deterministic finite automaton A,; :=
(M,%, 1,0, N) with transition function 6(m, o) := m e ¢(o) accepts L.
First, one shows:

For all w € ¥* and all m € M we have 6(m,w) = m e ¢(w)
(induction over |wl).
Consequently, 6(1,w) = 1 e p(w) = p(w).
weL=¢ N) iff ow)eN
iff 0(1,w)e N
it we L(Aun).

“2 ~> 17: Let A = (Q, X, qo, 9, F) be a deterministic automaton with L =

12

L(A). Every word w € ¥* defines a function d,, : Q — Q : ¢ — (g, w).
Let M = Q@ be the set of function from @ to Q. Since Q is finite, M
is also finite. With composition of functions as binary operation and
the identity function as unit element, M is a monoid.

Notation: (01 0 d2)(q) := 2(01(q)) (order!)

It is easy to see that ¢ : ¥* — M : w + J,, is a homomorphism.

How must N C M be defined?

Condition: L(A) = ¢ *(N)

we LA iff ¢(w)eN

4 U
5(qo, w) = 0y(qo) € F iff 0, €N

Thus, if we define N := {4,, | w € ¥* and d,,(qo) € F}, then ¢~ *(N) =
L(A) =L .
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

The image of ¥* under ¢ is called the transition monoid of A:

Definition 1.9 If A = (Q, %, q,d, F) is a deterministic finite automaton,
then its transition monoid is the submonoid M4 := {0, | w € £*} of M =

Q°.
The transition monoid of the minimal automaton is of particular interest.

Definition 1.10 For a regular language L, the transition monoid of the
minimal automaton is called the syntactic monoid of L. We denote this
monoid as Mj,.

Since the minimal automaton is uniquely defined by L, My only depends
on L. We can also define My, directly from L (without the detour through
automata).

Definition 1.11 For an arbitrary language L C ¥*, its syntactic congruence
~ on X" is defined as follows:

Vu,v e ¥t un~pvif Vo,y € X 0 auy € L iff avy € L.
It is easy to show that ~ is a congruence, i.e. it is an equivalence relation
that also satisfies:
Vu,v,0 € ¥* 1 (u ~p v~ (ux ~p v and xu ~p 2v)) .
Thus, we can construct the quotient monoid ¥*/., :
e domain {[w]., | w € T*} where [w]., :={w' | w ~p W'}

e operation [u]., ®[v]., := [uv]., (independence of representatives since
~p is a congruence)

e unit element [¢].., .
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

Proposition 1.12 Let L C ¥* be regular. Then ¥*/., is isomorphic to the

syntactic monoid M.

Proof: Let A = (Q, %, qo,0, F) be the minimal automaton for L.
We define:

14

w:E*/NL — M
(U], = Oy

1. This definition is independent of the chosen representative,

ie.ur~pv— 0, =0,.

Assume that u ~j, v, but 9, # 9,. Thus there is a ¢ € ) such that

0u(q) = 0(q,u) = q1 # g2 = 6(q,v) = 8u(q)-

Since A is minimal, ¢ is reachable, i.e. there is an x € X* such that

q = 0(qo, x).

Since u ~p v, we know for all y € ¥* that
ruy € L iff zvy € L.
But then we know for all y € ¥* that
0(q1,y) = 0(qo, xuy) € F iff §(qo, zvy) = 6(qo,y) € F

This shows that L(A,, ) = L(A,,).

Since A is minimal, ¢; = ¢.

. 1) is injective, i.e. &, = 6, = [u]~, = [V]~,-

Assume that d, = ¢, and xuy € L. We must show zvy € L.
zuy € L = 0(qo, xuy) € F. But this yields for ¢; := 0(qo, x):

6(qo, zuy) = 6(qr, uy) = 6,(6u(q1))

6u=0v 6y (0y(q1)) = 6(q1,vy) = 6(qo, 2vy) € F = zvy € L

. 1 is surjective:

0, is the image of [u]., .
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

4.

1 is a homomorphism:
U([u~y @ [v]ey) = O([uv]e,) = duw = 0y 0 6y = P([u]~,) 0 U([0]~,).

U(lel~y) = Oe.

Corollary 1.13 L is regular iff ~ has finite index.

Proof:

14 b
=

66<:77

If L is regular, then My is the transition monoid of the minimal au-
tomaton for L. This monoid is obviously finite.

We have just shown that M, ~ ¥*/_ , and thus ~ has only finitely
many equivalence classes.

To show that L is regular, we show that L is accepted by the finite
monoid ¥*/., .

We define: ¢ : ¥* — ¥*/ . tuws [u]o, and N :={[u]., |u € L}

We must show the following: ¢~'(N) =L

“D” ue L= éu)=[ul., € N=uec s }(N)

u)
“CP uegp H(N)=ou)=[ul., EN=>uelL

Note: The definition of /N is again independent of the chosen representative

since

(x) ue Land u~pv=vé€EL.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

Example 1.14 Let L = {0, 7}*0o7{0, 7}"*.

The following is a non—deterministic finite automaton for L:
o T
0 () ®

o, T o, T

Power set construction only generating reachable states:

. .

T o T

@ @ - :
7_
@

Thus, we now want to minimize the automaton:

. .

T o

Identify equivalent states:
¢ ~aq iff L(Ag) = L(Ay)
To compute ~4 we compute the following relations ~,, (n > 0).

g~ ¢ iff (geFandg €F)or (¢ Fandq € F),
¢r~n1 ¢ T g~y ¢ and Va € St 6(q,a) ~, 0(¢, a).
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

~, are equivalence relations such that Q@ x ) D~y 2D ~; D ...
Since (@ is finite, there is a k such that ~p = ~¢,;. One can show that then

N =V .

In the example:

e ~g : has the classes F = {¢o, @3} and F = {qo,q1}

® ~yp {QO}7{Q1}7{Q27Q3}

[ ] N2:N1:NA

Thus, the minimal automaton looks as follows:
o T

. . .

o, T

T o

The syntactic monoid of L is the transition monoid of this automaton

662,’00201,’02 5:,’00,’01?2_6 5:200,’01202:6}77

Po P1 ,’027 7 b1 P1 P2 IS Po P2 P2
Ogr = PoDr D2 0gry for all u € ¥F
P2 P2 P2
57’0 - Do P1 P2 - 57’00 7é 6707' - 507’-
P1 P2 P2

Consequently M4 = {4, 04,0:,04r,0,,}. The multiplication table can be
obtained from the observed identities.

Example 1.15 Not every finite monoid can be obtained as syntactic monoid
of a regular language.

M ={1l,a,b,c}
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

-1 a b ¢ a,b,careright absorbing, i.e. Vo € M :
1{1 a b ¢ x-a=a,x-b=b,x-c=c.

ala a b ¢

bbb a b c¢

cle a b ¢ Note: - is associative

We claim that M cannot be the syntactic monoid of some regular language:

Assume that L is a regular language and ¢ : M — ¥*/_, is a isomorphism.
We know: uw € L = [u]., C L (see (*) in the proof of Corollary 1.13)
For m € {a,b, c} we thus have:

W(m) C L or p(m) C L.

We have three elements and two possibilities for them to satisfy. Thus, two
of these elements must behave the same. We consider the case ¢/(a) C L and
(b) C L (all the other cases can be treated similarly).

Claim: ¢(a) = ¢(b) (this is a contradiction to ¢ being a isomorphism)

Proof of the Claim: Assume that ¢/(a) = [u]., and ¥(b) = [v].,. We
must show that u ~, v. Consider x,y € ¥*. We must show that zuy €
L iff zvy € L.

Case 1: [y]., # [€]~,, and thus ¥ ([y].,) is right-absorbing

VT (lruyley) = T () )T (W)U (W)
= ¥ ([yl~.)
= ¢ o)UY H(Wlen) = ¥ vy,

Thus [zuy]|., = [zvy].,, i.e. vuy ~p vvy = zuy € L iff zvy € L.

Case 2: [y]., = [¢]~, and thus v ([y].,) = 1.

v (puyle,) = TN (el )0 ()
= ¥
(

[]
[u],) = a
v lrvyle,) = 7Nl )Y ([0]y)
= ¢ ([v].,) ="

We know ¢ (a) C L and ¢(b) C L. Thus zuy € L and zvy € L.
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

We will use the connection between finite monoids and regular expressions
to define subclasses of the class of regular languages.

Definition 1.16 Let V be a class of finite monoids. The corresponding class
of languages L(V) is defined as follows:

L(V)s = {LCS* | M, e V).

Note: Since V' contains only finite monoids, all languages in L(V')y, are
regular.

To obtain “reasonable” classes of languages, we must restrict the attention
to “reasonable” classes of monoids. So called M—varieties have turned out to
be reasonable in this context.

Definition 1.17 A non—empty class V' of finite monoids is called M—variety
iff it is closed under building submonoids, (binary) direct products and ho-
momorphic images.

Submonoid: N C M is a submonoid of (M, e, 1) iff

ele N

e nn e N=nen eN

Closure under building submonoids means: M € V., N is a submonoid of
M= NcgcV.

Direct product: M; x M, with

L4 1M1><M2 - (1M17 ]‘M2>

° (ml,mg) o (m’l,m’Z) = (ml ° m,17m2 ) m’2>

Homomorphic images: if ¢ : M; — M, is a surjective homomorphism,
then M, is a homomorphic image of M.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS ...

Example 1.18 Let Vi be the class of all finite groups. It is not hard to
show, that Vi is an M—variety.

Note: Closure under building submonoids only holds since we consider finite
groups. E.g. (Z,+,0) is a group, and (IN, 4+, 0) is a submonoid, but it is not
a group.

There is an alternative characterization of M-varieties using equations.

Let X be a countably infinite alphabet (of variables). An equation is of
the form u = v where u,v € X* (instead of ¢ we usually write 1 in such
equations).

The monoid M satisfies the equation u = v iff ¢(u) = ¢(v) for all homomor-
phisms ¢ : X* — M.

Example: assume that =,y € X
Then zy = yx is an equation, which is satisfied by all commutative monoids:
commutative: Vm,n € M :men=nem

Take the homomorphism ¢ such that ¢(x) = m and ¢(y) = n. If M satisfies
xy = yx, then men = ¢(x) o d(y) = ¢(zy) = d(yzr) = d(y) ® p(x) = nem.

Definition 1.19 Let (u, = v,),>1 be a sequence of equations.

1. M wltimately satisfies (w, = vy)n>1 iff there is a & > 1 such that M
satisfies (u, = v,) for all n > k.

2. The class V of finite monoids ultimately defined by (u,, = vy, )n>1 consists
of all the monoids that ultimately satisfy (u, = vy, )n>1.

Theorem 1.20 [Eilenberg, Schiitzenberger]| For a class V of finite monoids,
the following are equivalent:

1. V is an M—variety.

2. V is ultimately defined by some sequence of equations.
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

Example 1.18 (continuation) The M-variety of all finite groups is ulti-
mately defined by (2" = 1) where 7 = lem(1,...,n) (lem = least common
multiple).

Proof:

1. If G € Vi then G satisfies 2™ =1 for all n > |G].
Let k := |G|
Claim: For all ¢ € G there is an [ < k such that ¢! = 1.
Consider ¢° = 1,¢' =g¢,9% ¢>,..., g".
Since |G| =k, there are 0 < i < k and 1 <[ < k such that ¢g* = ¢g**.

Since [ < k, we know that [ | i for all n > k = there is an r such that
[-r=n,and thus g" = (¢')" = 1" = 1.

2. If a monoid M satisfies the equation 2™ = 1, then M is a group: for
m € M, we know that m™~! is an inverse since mem™ ! = m"lem =
m" = 1.

The closure properties of M—varieties imply closure properties of the induced
classes of languages. We will show closure under N,U and ~—. But first, we
need one more lemma.

Lemma 1.21 Let V be an M-variety and L C ¥* a language that is accepted
by some M € V. Then My € V.

Proof: Since M accepts L, there is a homomorphism ¢ : ¥* — M and a set
N C M such that L = ¢~ *(N).

1. Without loss of generality, ¢ can be assumed to be surjective. Other-
wise, consider M’ = ¢(X*) and N’ = M N N instead of M, N. Since
M’ is a submonoid of M, we know M' € V.

2. Define for u,v € ¥*: u ~y v iff ¢(u) = ¢(v).
Then N¢QNL.
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Since: Assume u ~y v and zuy € L. We must show zvy € L.

o(avy) = o(@)o(v)o(y)
= o(x)p(u)o(y) since u ~y v
= ¢(auy) € N since zuy € L = ¢~'(N)
= avy€¢ '(N)=1L

3. We define:

v M — X/,
m = [u], if p(u) =m.
e ¢ is well-defined: if ¢(u) = m = ¢(v), then u ~,4 v and thus
ur~pv=[u] = [v]

In addition, for every m there is a u with ¢(u) = m since ¢ was
assumed to be surjective.

e ¢ is surjective since for every [u] we can take m := ¢(u), and then
Y(m) = [ul.

e Obviously v is a homomorphism

Thus, ¥*/., is a homomorphic image of M € V| and thus ¥*/., € V

Proposition 1.22 Let V' be an M-variety. Then L(V') is closed under in-
tersection, union and complement.

Proof: It is enough to show closure under intersection and complement.

1. complement: M, = My,
Since: My =X/, and Mg =¥/,
However: ~p=~y-/,
since ruy € L iff zvy € L
is equivalent to: xuy & L iff zvy & L.
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2. intersection: assume that ¥*/., € V and ¥*/_ , € V (ie. L,L" €
L(V)s)
Consider the homomorphism
O3 — X/ urfule,
¢ Y = X/, u[u]

~r

We know (proof of Corollary 1.13) that, for N = ¢(L), N' = ¢'(L'), we
have L = ¢ 1(N) and L' = ¢/~ (N').
We define
VX = ¥/, x ¥/, € V! (closure under product)
u e (O), ()

This is a homomorphism and we have

VI N xN) = {ueS | ¢(u) € Nand ¢/(u) € N'}
= ¢ '(N)Ne' ()
= LNnL
This shows that L N L' is accepted by ¥*/., x ¥*/. ,. Since ¥*/., X

¥*/~,, €V, Lemma 1.21 implies that My~ € V and thus LN L' €
L(V)sg. .

Sometimes it is more appropriate to look at semigroups instead of monoids:
Semigroup: has a binary associative operation (no unit element is required)

Most of the notions and results can be transferred from monoids to semi-
groups.

Syntactic semigroup:
The syntactic congruence ~p is also a congruence on the free semigroup
¥+ =3¥*\ {e}. For a language L C ¥* the syntactic semigroup is ¥/, .

Alternatively: The syntactic semigroup is the transition semigroup {d,, | w €
Y7} of the minimal automaton for L.

A S-Variety S is a class of finite semigroups that is closed under direct
product, homomorphic images and building subsemigroups.
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Note: Even if 1 € S, it need not to be in its subsemigroups.

S—varieties can also be ultimately defined by equations (Prop. 1.20 holds in
a semigroup variant 1.20s). The equations may not contain 1.

Note: S—varieties sometimes yield a more fine-grained division into classes.

For example: the equation xy =y

Only trivial monoids (i.e. monoids of cardinality 1) satisfy this equation.
In fact, let me M: m=1lem =1

Nontrivial semigroup satisfying vy = x:

- 18 associative

b
a
b

T |

a
b

Corresponding class of languages
If V is an S—variety, then L(V)y ={L C X*| S, € V'}

Lemma 1.21 and Prop. 1.22 also hold in semigroup variants 1.21s and 1.22s.

1.3 Regular languages and logical formulae
Which logic? For the moment, first order predicate logic.
Syntax: extra logical symbols are

= ) < ) P17 R Pk
binary binary unary symbols

Semantics: we consider finite interpretations only (for the moment)
= is interpreted as equality,
< is a total ordering (linear ordering) on the domain

Py, ..., P, are interpreted as subsets of the domain.

Such interpretations can be viewed as words over ¥ = {0, 1}*

Let I be an interpretation.
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e dom(I) ={dy,...,d,} for some n > 1 where d; < dy < -+ < d,,.
e P;is interpreted as a set P/ C dom([)

o Let 0; = (bﬂ, Ceey bzk) where

bj. = J
B0 dig Pl

Then [ corresponds to the word oy05---0,. Conversely, every such word
yields an interpretation.

Example 1.23 k=2 ie. ¥ ={0,1}>

The word ( (1) > ( (1) > ( (1) > over Y corresponds to the interpretation

dom(]) = {dl, dg, d3}

o di <dy<ds
.P{:{dl,dg,}
o P ={db}

Instead of interpretations, we will use words. Thus it makes sense to say that
a word w € ¥ makes a formula ¢ true (w = ¢).

Definition 1.24 Let ¢ be a closed formula (no free variables) of first—order
predicate logic using the extra—logical symbols =, <, P;,..., P,. Let ¥ =
{0,1}*. Then ¢ defines the language

L(p) ={w e X" |w F p}.

Note: Since interpretations must have non—empty domains, the empty word
does not describe an interpretation, and L(y) C X*. This is not a real
restriction. For example, L C ¥* is regular iff L \ {e} is regular.
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Example 1.25 k£ =1,1i.e. ¥ = {0,1}. The language 1*10* is defined by the
following formula:

Jz. (Pi(2) AVY. (y <2 = Pi(y)) AVz(z <z = 2Pi(2)))

Proposition 1.26 Boolean operations in formulae correspond to Boolean
operations on languages:

L(~p) = X7\ L(yp),
L(p Ap) = L(p) N L(Y),
L(pVvip) = L(p)UL(1).

In order to define languages, we will introduce some useful abbreviations:

Q,(z) For every o € ¥ we can construct a formula @Q,(z) with one free
variable that says that o occurs at position x.

wrns{() () ()0
Qun(x) = Pi(x) AN Py(x), Quoy () := Pi(x) A=Py(x)

Min(z) We can construct a formula Min(z) that says that x is the first
position of the word.
Min(z): =3y. (y < x).

Max(z) Correspondingly we can express the last position by a formula
Max ().
Max(z): Yy.(y < x)

Succ(z,y) y is the successor position of z:

Succ(z,y): v <y A-Jz(r < zAz<y).

s(x) Sometimes it is more convenient to use a function symbol to express
the successor:

“s(x) = y” corresponds to Succ(x,y) V (Max(z) Az = y)
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min, max Correspondingly we will sometimes use constants min, max for
the first and the last position

Pred(z,y) Just like successor we can introduce predecessor as formula Pred(z, y)
or as function p.

Example 1.27 The regular language a(ba)* can be defined through

Q. (min)A
Va, y (Qa(x) ASucc(z,y) = Qu(y))A
Va,y (Qu(x) A Suce(x,y) = Quly)A
Q. (Max).

What kind of languages can be defined with formulae from first order pred-
icate logic (PL1)? We will see later on that only regular languages can be
defined this way. Can all regular languages be defined with PL1-formulae?

No!

Example 1.28 L = a(aa)* is regular, but it cannot be defined using a PL1-
formula. We will see later on how this can be proved. (The connection to
monoids becomes important.)

How can we extend PL1 to get all regular languages?
One has to introduce:

Quantification over unary predicates

e Variables for unary predicates: X, Y capital letters

e Variables for objects: x,y lower case letters

The language a(aa)* is defined by the formula

AX3Y (X (min) A
Va,y (X (z) A Suce(x,y) = Y(y)) A
Va,y (Y(x) ASuce(z,y) = X(y)) A
X(max) AVz(X(z) & =Y (x)) A
Vi Qa()).
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We will show that adding quantification over unary predicates gives us ex-
actly the regular languages.

Chapter 3 will be concerned with the class of languages defined by PL1-
formulae.

Chapter 2 is a warm—up exercise where we consider a smaller class of lan-
guages, which can be defined using quantifier—free PL1-formuale.
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Chapter 2

Generalized—definite languages
and quantifier—free formulae

First we introduce the class of languages directly. Then we characterize it
using semigroups and formulae.

2.1 Generalized—definite languages

Informally, these are languages such that there is a £ such that only the first
and last £ letters of each word are relevant.

Definition 2.1 The class By of all generalized—definite languages is defined
as follows: L C ¥* belongs to (By)y iff there is a £ > 0 such that we have
for all w € L:

if w=wuv="12"vfor |u] = |u'| =k, then uX* N X*u' C L.

Note that uX* N X*u’ consists of the words starting with « and ending with

ul

Whether a word belongs to L or not depends only on the last and first k
letters.
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Lemma 2.2 (By)y, is the Boolean closure of the languages:

Proof:

{uX* Jue S U{S% | € X7}

1. Let L € (By)x and let k be the corresponding number from Def. 2.1.

(a)

2. (a)

30

k=0:

Thus L =) or L = X*.

In the second case ¥* = ¢X* and in the first ) = uX* N uX* for an
arbitrary u

k> 0:

L= U @wsrnz)ufve L] <k}
|u|=k=|u'|
uSF NS/ CL

“D” g trivial.

“C” Let we L. If [w| < k, then w € {v € L||v] <k}. Assume
that |w| > k. Thus there exist words w,u/,v,v" such that
lu| = || = k and w = uwv = v'u’. By the definition of (By)sy,
w € L implies uX* N Y*u' C L. Thus, uX* N X*u' is in the
union and obviously w € uX* N X*u'

[t remains to show that {v € L | |v| < k} is in the Boolean closure.
It is enough to show that {v} is in the Boolean closure

{v} =¥\ vEE* = 0vX*\ (U voX")
oEY
We show L = wX¥* € (By)g. Take k = |w|.
Assume that w' € L and that w' = wv = v'u’ for |u| = |u'| = k.
But then v = w and thus «X* N Y¥*u C uX* = w¥X* =L

The case L = X*w can be treated analogously.

) closure under union:

L, € (By)y with number k; and Ly € (By)s with number ky. We
choose k = max{ky, ka}. Note: u = ujus = 11 X* D uX*

Using this fact, it is easy to show that k is the right number for
LU L,.
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(d) closure under complement:
Let L € (By)s and let k be the corresponding number. But then
k also works for L. Let w = uv = v'u’ € L where |u| = |u| = k.
We show uX* N X*u' C L.
Assume, that there is a v’ € uX*NYX*u’ such that w’ € L. But this
implies uX*NY*u’ C L. But then w € L, which is a contradiction.

2.2 The corresponding S—variety
To define this S—variety we need the notion of an idempotent element.

Definition 2.3 Let S be a semigroup. The element e € S is idempotent ift
cee=e.

Unit elements are obviously idempotent, but there may be other idempotents
as well.

Proposition 2.4 Let S be a finite semigroup and m € S. Then the set
{m,m? m3, ...} contains an idempotent element.

Proof: Since S is finite, there are i, k > 1 such that m! = m!**:

mH—k—l

“«— s s .

m m? m’/
\

mit mit?
Obviously there is an ¢ such that
o ( =0(k),ie I.(L=Fk0).
o i <(<i+k/ie l=i+pforsomep 0<p<k
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Claim: m’ is idempotent

ket =1,
itp="¢ , mith—mi
m' em’ = mtem* em? " =" m'em? =m".
| ]
Note: if m?, m™t, ... mi** 1 are different from each other (i.e. k was chosen
minimal), then {m?, m*, ... m!**~1}is a cyclic group with unit element m?’.

For a given semigroup S we want a number n such that m™ is idempotent
for all m € S.

Corollary 2.5 Let S be a finite semigroup and |S| < n. Then we have for
all m € S and m =lem(1,...,n): m" is idempotent.

Proof: Obviously one obtains in the proof of Prop. 2.4 a k such that i +k —
1 < n. Thus, ¢ < n and hence ¢ is a divisor of 7, i.e. there is an ¢ such that
7 =(- (. It follows that m” = (m‘)" = m". .

Definition 2.6 The class D consists of all finite semigroups S that satisfy

the following: for all idempotent e € S we have eSe = e.

(i.e. {eme | m € S} = {e})

(i.e. Vm € S : eme =e)

Proposition 2.7 D is an S—variety, which is ultimately defined by
(*)(xﬁyﬂvﬁ = wﬁ)nzy

Proof: it is enough to show that ID is ultimaltely defined by (x)

1. Let S € D. By Corollar 2.5 we know that for n > |S| and m € S
we have m" is idempotent. By the definition of ID it follows that
m™m'm™ = m™ for all m’ € S. Thus S satisfies (x) for all n > |S|.

2. Assume that S satisfies (x) for some n. Then we have for all idempo-
tents e and all m € S:

eme = e"me" =€ = e, and thus eSe = ¢
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Lemma 2.8 Let S € D.

1. If n > |S| and my,...,m, € S, then m; - -- ®@m,, is idempotent.

2. if e, f € S are idempotent and m € S, then emf = ef.

Proof:

1. Consider my, mymsy, mymsmg,...,my---my. Since n > |S| there are
@ < j such that my---m; = my---mymiyq---m;. By Prop. 2.4 there
is an ¢ such that (m;,; ---m;)" is idempotent. But then

ml...mn fr— (ml...ml)(ml+1...m])(m]+1...mn)
= (ml"'mz‘)(mz‘+1"'my‘>z(m]‘+1"'mn>

= (mr'-mi)(mi+1---mj)fgmj+1---mn)(m1---mQ'
e

(magr - -my) (mygn - - my)
N——

= (my--mg) (Magr - -my) (Mjgr - - my,)
(g - omg) (Mg my) (Mg - my,)

= (my---my)(my---my).

The second identity holds since my ...m; = my...mymq ... m;.

2. e(mf) “E° efe(mf) = e(femf) "E ef. .

Proposition 2.9
L(D) = By,

L.e. for every finite alphabet X and every L C X* we have
SpeD & L e (By)s.

Proof:
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“<” Let L € (By)y, i.e. L is in the Boolean closure of the languages {uX* |
uw e TP U{X | ' € ¥*} (Lemma 2.2). By Prop. 1.22s, L(D) is
closed under Boolean operations and thus it is sufficient to show that

~

u¥* und ¥*u’ belong to L(ID). We consider L = uX¥* (E*u’ can be
treated symmetrically).

Let |u] = n.

Case 1: n=0
Thus uX* = ¥*: in this case ~,=¥* x ¥*, and thus S, = X%/,
consist of a single class, which is obviously idempotent. In addi-
tion, S;, € D since S, = {e} and cococ =ce.
Case 2: n >0
Claim: If |w| > n, then wv ~p w, for all v € ¥*.
Proof of the claim: for all z,y € ¥* we have
rwovy € L =uX* iff xwovy starts with u
iff rw starts with u
(since |w| > n)
ift 2wy starts with «
it  awy € L =uX".
s Claim

Let e = [z]., € S, = X%/, be idempotent.
We must show eSre = e.

Since |z| > 1, we know that |z"| > n and thus w := 2" satisfies
the precondition of the claim. Let m = [y]., € S.. Then we have

by the claim =, .
= (2", =€ =e.

em = e"m = [z"]. o[y]., = [2"y].,
In particular, this implies eme = ee = e, which shows S} € D.

“=7 Let S, €D, n= |Sp| + 1. By Lemma 2.8 (1) we have for all words u
of length n that [u]., is idempotent:

[U]NL = [01 cee Un]NL = [Ul]NL ®:---o [Un]NL'

Let # € L with |z| > 2n. Then x = wvu’ for words u,v,u" with |u| =
|u'| = n. We know that [u].,,[u]., are idempotent. By Lemma 2.8
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(2) we have for all words w:

[wwd], = [uly o [wl., @[u].,
= [ul, o [u].,
= [ul~, o [v], o U],
= [wou]., =[7].,

Thus, x € L implies that uX*u' C L.
To sum up, this shows the following: if [u| = |u'| = n, then uX*uw" C L
or uX*u’ C L. Consequently,

L= U uX*u' U {we L ||w|<2n}
uS*u'CL in(By)y since singleton {w}e(Bo)s
[u]=|u'|=n

It remains to be shown that uX*u’ € (By)s:

uS v’ = (uE N )\ {w | [w| < 2n} € (By)s

(Bo)s (Bo)s

Corollary 2.10 Let L C X* be a regular language (given by a regular
expression or finite automaton). Then we can effectively decide whether
L € (By)y or not.

Proof: Given L C ¥* we compute its syntactic semigroup Sy, (by computing
the minimal automaton and then its transition semigroup). For this finite
semigroup we can obviously decide whether eme = e holds for all idempotents
e € St and all elements m € Sy. "
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2.3 Quantifier—free formulae

As extra—logical symbols we will use binary relations =, <, unary relations
Py, ..., P, additionally constants min, max, unary functions s, p. The in-
terpretation of these symbols is fixed as described in Chapter 1.3.

Note: In Chapter 1.3 we have seen that min, max, s, p can be expressed
by formulae using only the other symbols. However these formulae need
quantifiers. Since we consider quantifier-free formulae here, we need these
symbols explicitly.

Proposition 2.11 Let ¥ = {0, 1}*. For L C ¥* the following are equivalent:

1. L € (By)s.

2. L\ {e} = L(p) for a quantifier—free closed formula ¢ over the extra
logical symbols =, <, P,..., P,, min, max, s, and p.

Note: Since {e} € (By)s, we know that L € (By)s iff L\ {€} € (Bp)s.

Proof:
“l — 2” Since the Boolean operations on languages can be expressed using
the connections A, V, = it is enough to consider the languages u* and X*u/'.

We consider only the case L = uX*.
Formula expressing u3*:
Let w = oy ---0; for some [ > 1.
Qo (min) A Qq,(s(min)) A Qqy (s(s(Min))) A ...

. A Qy, (57 (min))
As'™%(min) < max (is left out if [ = 1)

If u =¢, then L = uX* = 3* and thus L\ {e} = ¥T. Thus, we can take any
formula that is trivially true; for example, min = min.

“2 — 1” Let ¢ be such a closed quantifier—free formula. Thus, ¢ does not
contain variables. Terms are built using min, max, s, p (e.g.: s(p(s(min)))).
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These terms can be normalized into terms of the following form:
s"(min), p"(max) n >0

To this purpose, we use the fact, that s(max) = max, p(min) = min,
s(p(d)) = d = p(s(d)) unless d is one of the extremal points min, max.

The formula ¢ is a Boolean combination of atomic formulae

Pi(t), t =1, t <t', where t,t are normalized

Since (Bp)y is closed under Boolean operations, it is sufficient to show that
the atomic formulae define languages in (By)s;

e P;(s"(min)) is satisfied by

— words of lenghth < n + 1 satisfying some conditions
Finite sets of words belong to (By)s

— words of length > n + 1 whose (n + 1)th symbol ¢ € {0,1}* has
as i—th component a 1:

U uox” S (BO)Z
jul = n
o € ¥ with +—th component 1

e P;(p"(max)) can be treated similarly.

e formulae t = ¢/, t < ¢’ are either true for all words (X% is in (By)x) or
they restrict the length of the words:

— s"(min) = s™(min) for n < m says that the word has length
< n+ 1. Finite sets of words belong to (By)s.

— s"(min) < s™(min) for n < m says that the word is of length
> n + 1. The complement is a finite set of words.

All other cases can be treated similarly! .

March 3, 2005 37



Chapter 3

Star—free languages

These are the languages definable by PL1-formulae.

3.1 The class of languages

The class of regular languages is the smallest class that contains all finite
languages and that is closed under

e union (L; U Ly),
e concatenation (Lj - Ly) und

e star (L*)

Disallowing star here would leave us only with finite languages. This ist a
small class strictly contained in (Bp)y. We know that regular languages are
also closed under N and ~. We now disallow *, but explicitly allow N and ~.

Definition 3.1 For a finite alphabet X, the class SFYy; of all star—free lan-
guages over X is the smallest class that satisfies:

e all finite languages over X belong to SFy
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o if L,Ll,LQ S SFE, then so are L1 . LQ, L1 ULQ L1 ﬂLQ, Z: E*\L

Example 3.2

1. ©* € SF, since ©* = () and () is finite.
2. If A C ¥, then A* € SFy since A* = $%\ (2% - (2 \ A) - £¥)
3. ¥ = {a,b} Then a(ba)* € SFx since

a-(ba)" =a-(X°\ (aX"UXbU T aaX” U X*bbE"))

The example shows that languages whose straight—forward representation
uses star may well be star—free.

How can we decide, for a given regular language, whether it is star—free or
not? More concretely: how can we show that a(aa)* is not star—free?

These questions can be answered by looking at a characterization of star—free
languages using finite monoids.

3.2 Aperiodic monoids

In chapter 2 we have seen that for an element m of a finite semigroup the
set {m, m? m3,...} always contains an idempotent:

mH—k—l

2 i -~

m m e m

W

mi—l—l mi—i—Q

For aperiodic monoids, we can choose k£ = 1.

Definition 3.3 The finite monoid M is called aperiodic iff there is an n > 1
such that m"* = m" holds for all m € M.
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Obviously the class Ap of aperiodic monoids is ultimately defined by

(xn-i-l — xn)nzl-

Note: If m™*! = m”, then m™ ! = m” for all n > n. This shows that Ap
is an M—variety.

Recall: if m’ = m'™*, then m!, m**, ..., m**~1is a group. If k is minimal,
this group contains k& elements.

Definition 3.4 Let (M, e,1) be a monoid. The subset G C M is a group in
M iff G is a subsemigroup of M (m,m' € G — mem' € G) that is a group
w.r.t. the operation e of M restricted to G.

Note: The unit of the group G is an idempotent element of M, but it need
not to be the unit 1 of M.

For aperiodic monoids, the cyclic groups {m?,...,m™*~1} have cardinality
1. This is true for all groups in M.

Proposition 3.5 The finite monoid M is aperiodic iff it contains only trivial
groups (i.e. groups of cardinality 1).

Proof: (z"t! = a™),>;

“=” Let M be aperiodic and let n be such that m™*! = m” for all m € M.
Assume that G C M is a group in M with |G| > 1. Thus G contains
in addition to its unit element e another element g # e. We know that
g"™ = g". By multiplying this equation with (¢")~!, we obtain g = e.

“e” Let m € M. We consider {m, m?* m?...}. Let k be minimal such that

there is an 7 with m** = m®. Then we know that {m’, m**!, ... m+"1}
is a group in M, and thus k£ = 1 since M contains only trivial groups.
Thus we have for all m € M an i,, > 1 such that m»*t = mi=. Obvi-
ously, m’*t = mJ for all j > 4,,. Thus, if n > max{i,, | m € M} then
m™*t = m™ holds for all m € M. .
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We are interested in aperiodic monoids since the correspond to star—free
languages.

Proposition 3.6 (Schiitzenberger) L(Ap) = SF, i.e. for all L C Xt

M, e Ap iff L€ SFs.

The proof (in particular of “=") is rather involved (see Automata, Languages,
and Machines).

Corollary 3.7 Let L C X* a regular language (given by regular expression,
finite automaton, ...). Then it is decidable whether L € SFy, or not.

Proof: Construct the syntactic monoid M, and then test whether it is
aperiodic. .

Example 3.8 Let ¥ = {a}. Then a(aa)* ¢ SF..

Proof: The minimal automaton for L = a(aa)* is

O —O)

Transition monoid

12 12
0e = —— 0y = —
12 21
6aa - 66
Thus M; = {6, d,} with unit element 6, and 6, o §, = d.. Consequently M,
itself is a group of cardinality > 1. Thus M| is not aperiodic. .
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3.3 Formula of first—order—logic

We will show that the star—free languages are exactly the ones definable by
first order formulae.

Proposition 3.9 For a language L C X the following are equivalent

1. L € SFy.
2. L = L(y) for a closed formula ¢ of first—order predicate logic using the
extra logical symbols =, <, @, (a € X).

Note: Instead of Py,..., P, we use ), for a € ¥ directly. This is just for
convenience.

The proof of “1 — 2” is rather simple, whereas “2 — 1” is more involved.

3.3.1 Proof of “1 — 2” of Theorem 3.9

Star—free languages are obtained from the finite languages using Boolean
operations and concatenation.

Finite languages

Obviously, it is sufficient to consider singleton sets {w} for w € Y. Let
w=a;---a, €.

O 3r, 1 Qo () A A Qa, (Th) A

n—1

/\ (zj <xjpi ATz (@) < 2 Az <)) A
j=1

-z (z< a1 Va, <z)

Obviously, L(p,) = {w}.
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3.3. FORMULA OF FIRST-ORDER-LOGIC

Boolean operations

Boolean operations correspond to the logical connectives A, V, = (by Prop. 1.26).

Concatenation

Concatenation corresponds to the existential quantifier (in principle).

First, let us consider an example: L; := a* and Ly := b*

©1 : Va.Qu(x) is a formula defining L; and
2 V. Qp(x) is a formula defining Lo
A formula for Ly + Lo:

dz. (Vo (x < 2= Qux)) AV (x> 2= Qp(x)) AT 2 > 2)

The quantifier in ¢ is relativized to the position < z and the one in ¢y to
the position > z. In general, the relativization =% of ¢ to the position < z
is defined as follows:

o (U1 Ath)S* =T A5
(11 V h2) S = 97" V5~
o (W) =)
(
(

Jr.(2))s* = v (v < 2 AY(2)SF)
Vo (2))<* = Va. (z < 2 = ¢(a))

(where we assume that > does not occur in the formula.)
The relativization =7 is defined analogously.

Assume that L = L, - Ly C X" and that L; and L, are star—free. If Ly, L, €
Yt then we know by induction that there are formulae <p1 and o with
Ly = L(yp1), Ly = L(gps). Then Ly - Ly = L (3z. (901 NN 2'))

If say L, contains €, then Ly - Ly = Ly - (L2 \ {€}) U L;. .
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3.3.2 Proof of “2 — 1” of Theorem 3.9

To show that every closed formula of PL1 defines a star—free language we
want to use induction over the quantifier—depth of the formula, i.e. the max-
imal nesting of quantifiers in the formula (every closed formula contains at
least one quantifier.).

Since we have negation, we may assume that the formula contains only exis-
tential quantifiers.

Since the connectives A, V, = correspond to N, U, of languages, it is sufficient
to consider formulae of the form Jz. p(z)

Induction base: quantifier—depth 1

Thus ¢ does not contain any quantifiers and since Jz. p(x) is closed, ¢ does
not contain variables different from x. We can assume without loss of gener-
ality that ¢ is a positive Boolean combination (only A, V) of formulae

e Qu(x) or =Q,(x),
e v <uzor(xr<ux),

e © =z oder ~(z = x).

We assume that ¢ is in disjunctive normal form D; V...V D,. Disjunct D;
is of the form C; A ... A C,,. This can be further normalized:

e replace v < x, =(x = x) by false, i.e. remove any disjunct D; containing
such an expression.

e replace =(z < x),x = x by true, i.e. remove it from the disjunct.
e if a disjunct contains Q. (), then

— remove the whole disjunct if it contains =Q,(x) or Qy(x) for a # b

— otherwise remove from the disjunct all =Q,(z) for b # a

Thus, we end up with disjuncts of the form
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* Qux),
o Qu(T)N... AN2Q,, (T).

Since (Jz. Dy A...AD,) = 3x.D;...3x.D,, we can restrict the attention to

o J1.Q,(7)
o Ju.(=Qu (z) A ... A =Q,, (7))

L(32.Q.(x)) = X" aX" € SF;
L(3x. (=Qa () Ao o A=Qy, (x))) =X - (X \ {a,...,a,}) - X" € SFy

This completes quantifier—depth 1.

Induction step: n —-n+1

Let Jz. p(x) be of quantifier—depth n+1. Before we can show that L(3(.z)px)
is star—free, we need some notation and two propositions.

Definition 3.10 With L, we denote the set of formulae of PL1 (over the
extra logical symbols =, <, @, for a € X) having k free variables and
quantifier—depth < n

Example: ¢ = 3r.(y < x Ax < 2 A Qq(x)) belongs to Ly ;. To interpret this
formula, a word (e.g. baa) is not enough. We must also say how y and z are
interpreted (e.g. y by 1 (first position in baa) and z by 3 (third position in
baa)). We say that (baa, 1,3) satisfies .

In general, formulae from Ly, are interpreted by tuples (w, §) where w € £+
and §=sy--- s, with s; € {1,..., |w|}. “(w,35) satisfies ¢ € Ly,,” (w,5) = ¢
is defined in the obvious way. For k = 0, we dispense with the empty sequence

—

S.

Definition 3.11 For n > 0 and k£ > 0 we define

(w,3) =g (v, 1) iff  forall ¢ € Ly, we have

(w, ) ¢ iff (v,1) | .
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Obviously =y, is an equivalence relation. For & = 0 we write =, in place
of =p,,. In this case, we extend =, to ¥* by defining ¢ =, ¢, i.e. {¢} is a
=,—equivalence class.

To proof “2 — 1”7 of Theorem 3.9, we need two propositions, which we will
prove in separate subsections.

Proposition 3.12 For all n > 0 and k£ > 0 there is a finite set 'y, C Ly,
such that every element of Lj , is equivalent to some element of I'y, ,,.

Equivalent means that the formulae are satisfied by the same tuples (w, §).
As a simple consequence of this proposition we obtain =, has finite index.

Corollary 3.13 For all £ > 0 and n > 0, =, has only finitely many
equivalence classes.

Proof: The class of (w, §) is uniquely determined by the following subset of
Fk,n:

F'={peli,| (w5 e}

Since there are only finitely many such subsets of I'y ,,, there are only finitely
many equivalence classes. .

We can extend the notion of the language defined by a formula also to formu-
lae with free variables: for ¢ € Ly, we define L(y) := {(w, ) | (w, 5) = ¢}.

Corollary 3.14 For all n > 0 and £ > 0 and all = ,,—classes W there is a
formula pw € Ly, such that W = L(pw).

Proof:
W=[wdz, =L N\ on N ¥

IS S Yelk n
(w,3) ¢ (w,3)
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Corollary 3.15 For all n > 0 and £ > 0 and all ¢ € L, the following
holds: ¢ is equivalent to a finite disjunction of formulae py for = ,,—classes
wW.

Proof:
¢ is equivalent to \/ ow.
W=[(w,9)]=y, ,
(w,5)Fe
This disjunction is finite since =, has finite index. "

The second proposition shows a connection between =j, and = .

Proposition 3.16 Let n > 0, u,v,u',v" € ¥* and a € X.

uw=, u' Av=, 0" = (uav, ju| + 1) =, (Wav', |u'| + 1)

We are now ready to finish the induction step. Thus, let Jz. ¢(x) be a closed

formula of quantifier—-depth n+1. Consequently, p(x) € Ly, and thus ¢ is a

finite disjunction p(z) = \/ ¢w(x). Consequently, Jz. p(x) is equivalent to \/ Iz pw ().
Thus is enough to show L(3x. oy (z)) are star—free.

Lemma 3.17
L(3z. oy (z)) = U vav
U:[uo}go,n, V:[UO]EO,n
a€Y mit(ugavg,|ug|+1)EW
Proof:
“C”

w € L(Jz.pw(x)) iff  there exist u,v € ¥* such that w = uav
and (uav, |u| + 1) E ow(z)
iff  there exist u,v € ¥*,a € ¥ such that w = uav
and (uav, |u|+1) e W

Consequently w € [u]a[v] and [u]a[v] occurs in the union on the right—
hand side.
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“D” From (upavy, |ug| + 1) € W it follows that (ugave, |uel + 1) = @w(x),
and thus wyavy € L(3z. pw (x)).

It remains to show that for all u =, ug and v =, vy we also have
uav € L(3z. pw (2)).

With Prop. 3.16 we have (ugavy, |uo| + 1) =1, (uav, |u| + 1) and thus
(uav, |u| + 1) € W. As above, thus implies uav = Jx. o (2). n

By Corollary 3.14, the = ,—classes U,V of the lemma are of the form U =
L(py), V. = L(pv) for gu,pv € Lo, or U = {c} or V. = {c}. So the
induction hypothesis yields that L(¢y) and L(pp) are also star—free: Since
star—free languages are closed under union and concatenation, L(3x. ow (z))
is star—free. .

3.3.3 Proof of Propositions 3.12 and 3.16

Proposition 3.12 For all n > 0 and k£ > 0 there is a finite set 'y, C Ly,
such that every element of Lj , is equivalent to some element of I'y, ,,.

Proof: We prove this proposition by induction on n.
Let ¢ € Ly . Such a formula is a Boolean combination of

e elements of Ly 1
e formulae of the form Jx. ¢ (z, y1, . .., y) where (2, y1, ..., yk) € L1
Induction base n = 0: Let & > 0 be arbitrary. A formula ¢(y1,...,yx) €
Ly is a Boolean combination of atomic formulae.
(%) Qu(x) for a € ¥, x <y, x =y where z,y € {y1,...,yr}-
Without loss of generality, we consider only elements of Lj o containing
free varibales from {yi,...,y;}. But then there are only finitely many

formulae of the form (k). Thus, there are only finitely many Boolean
combinations of these formulae (up to equivalence).
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Induction step (n — 1 — n): Assume that we already have finite sets I'y ,_1
and I'y4q,—1 with the desired properties. Thus ¢ is equivalent to
a Boolean combination of elements of I'y,_; and formula Jz.v with
Y € I'py1p—1. Thus, up to equivalence there are finitely many such
Boolean combinations. .

Our proof of Prop. 3.16 will use a game theoretic characterization of the
relations =y .

Definition 3.18 [Ehrenfeucht—Fraissé games| Let ¥ be a finite alphabet.
We consider two players I und II, who play on words w,v € ¥*. A move
chooses a position in either u or v. Player I has the first move and then there
are alternating moves from II and I. If T moves in u then I must answer in
v, and if I moves in v then IT must answer in u.

A game of length n consists of n moves of I and of the n answer moves of II.

Let (i1,1),- -, (in, jn) be the chosen positions, where i, is the position in u
and j, the position in v (independent on which player has chosen them).

Player II has won this game iff the following holds:
Let u=a;...a, and v = by ...b,. Then:
® a;, = b;, for p =1,...,n, i.e. at the positions chosen in move p we
have the same letter.
o i, <1, iff j, <ju, ie. the relative placement of the positions must be

the same.

Otherwise, II has lost and I has won.

Example 3.19 n =3
Let ¥ = {a}. Thus only the order of the chosen positions is relevant.

1 2 3 4 5 67

U= a a a a a a
12 1Ll

V= Qa a a a a a a
2 Il

March 3, 2005 49



CHAPTER 3. STAR-FREE LANGUAGES

IT,1 on 5 or 6 would let I win the game by placing first 6 in v and then 7 in
v. 11,2 could have also chosen 3 in v instead of 2

Whereever I moves in the third move, II can answer appropriately and thus
II wins.

Example 3.20 n =3, ¥ = {a, b}

1 2 3 4
u= b b a b
L3 12 11
v= b a b b
I,2 II,1

IT, 1 must choose the a in v and II,2 must choose the b to the left of a in v.
IT cannot answer the third move of I appropriately.

Definition 3.21 Let n > 1 and u,v € X*. We say that II has a winning
strategy for games of length n on w, v iff II can answer all possible moves of
I such that II wins.

To be able to use induction arguments, we will also consider games, that
have already started.

Letu,v € Stand §=s,...5, € {1,... |[u[}fandt =t,...t, € {1,...,|v]}*
Then the pair (u, ) and (v, ) describes a game where already k moves have
been made by each player. A game of length n on this pair is a continuation
of this game by n moves. Player II wins this continuation game iff II wins
the whole game.

Definition 3.22 Let (u,5) and (v,1) be given where u,v € S and § €
(o Jul) T (1, ol

(u,5) ~pn (v,f) iff 1T has a winning strategy for games of
length n on (u, %) and (v,1).

For k = 0 we extend ~y, to ¥* by making {e} a ~y,—class.

Lemma 3.23 ~ , is an equivalence relation.
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Proof:

reflexive: game played on (u, §) and (u, §). II just simulates the moves of 1.
symmetric: clear since I can move in both words.

transitive: Let WS1 be the strategy that shows (u, 8) ~p, (v,f) and WS2
be the strategy that shows (v,t) ~, (w,7). The winning strategy for
IT on (u, §) and (w, ) works as follows:

e if [ moves in u, then II answers first with WS1 in v, and then to
this move with WS2 in w.

e if [ moves in w, then II answers with WS2 in v, and to this move
with WS1 in u "

We will show ~y ,, = =4,

For ~y ,,, the corresponding statement of Prop. 3.16 can easily be proved:

Lemma 3.24 Let n > 0, u,v,u/,v" € ¥* and a € X.

U~ u AU ~g, 0= (uav, ful + 1) ~p, (Wad, [u] 4+ 1)

Proof: We consider the case where u,v,u’,v" € ¥*. (The other cases can
be treated analogously.)

Let WS1 be the startegy that yields w ~, v and WS2 the strategy that
yields v ~g,, V'

If I moves in u (u'), then II answers with WS1 in ' (u).

If I moves in v (v'), then II answers with WS2 in v’ (v).

If T moves |u] + 1 in wav (Ju'| + 1 in «'av’), then IT answers v’ + 1 in u'av’
(Ju| + 1 in wav).

Obviously, this yields a winning strategy for IT on (uav, |u|+1) and (v'av’, |u'|+
1) .
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To prove Proposition 3.16, it is enough to show that ~y,, and =, coincide.

First, an intuitive argument. The chances for II to win are the greater the
more similar the tuples are. If they are in the relation =, they cannot be
distinguished by formulae of quantifier—depth n, and are thus similar.

The connection between quantifier—depth and the number of moves is also
quite clear: Jz.p(x) says that there exists a position with certain porperties.
A move picks a position.

Lemma 3.25 For all n,k > 0 we have

~kn — =kn

ie. (u,3) ~pn (v,0) iff (u,3) = (v, 7).

Proof: by induction on n
Induction base n = 0: Let (u,5) and (v, %) be given.

1. Assume that (u, 3) = (v,1). Assume that the free variables are from
the set {y1,...,yx} where y; corresponds to the i—th component in §
and 7. Let u = ay - - “Qp, UV = by ---b,. For the atomic formulae y; < y;,
Yi = y;, Qaly;), the equivalence (u,5) =40 (v,t) implies that (u, ) and
(v,1) behave the same on these formulae:

a) (w8 E w<y if (0D E w<y
(x) 0) (w3 F w=y iff (i) E u=y
C) (u7§> ): Qa(yi) iff (Uvﬂ ): Qa(%’)

This is equivalent to saying

CL) s; < 85 iff t; < t]’
(**) b) Si = S5 iff tz == tj
c) a;, =a iff b, =a

However, a) and c¢) of (xx) is exactly the condition that II has won the
game (without additional moves since n = 0). And thus (u, ) ~p

(u, t).
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2. Conversely, assume that (u,5) ~go (v,7). Consequently II has won
the game (without additional moves). This shows that a) and c¢) of
(%) hold. Condition b) follows from a) since < is a total ordering.
This yields a) b) ¢) of (%), and thus (u, 5) and (v,%) behave the same
on atomic formulae. Thus, they behave the same on their Boolean
combinations, which are all the elements of Ly o. This shows (u, §) =4

(v,2).
Induction step n — n + 1:

1. Assume that (u,5) ~gnq1 (v,1). Let ©(y1,...,ys) € Lny1 and assume
that (u, ) = . It is sufficient to show that this implies (v,) = ¢.

Since Boolean operators are unproblematic, it is enough to assume that
¥ is of the form ¥ = 3yk+1-¢(y17 < Yk yk:+1> where ¢ € Lk+1,n-

Since (u, 5) ~pns1 (v,1), II can answer appropriately the first move of
I. Thus, for every sgiq € {1,...,|ul|} there is a ty1y € {1,...,|v]} such
that

(t, 88k41) ~pt1n (0, ftk-}-l)-

Induction yields that for all si,; there exists a #;,1 such that
(, $5k41) Zksin (0, Fisr) (%)
Since (u, §) = Jykr1- ¥ (Y1, - - -, Yk, Ypt1) there is an spy with
(u, Ssp41) E VW1, - -5 Yk Yrt1) (%)

Let t541 be such that (%) holds. Since ¢ € L1, (%) and (*%) imply

(U, t_ftk-i-l) ): w(yla ceey Yk yk-l-l)‘

This shows that

(v, 8) | Fyksr V(s -« - Yo Yirr)-

2. Assume that (u,3) opns1 (v,1). We are looking for a formula ¢ €
Liny1 such that ¢ is satisfied by one of the two tuples (u, ) and (v, ),
but not by the other one.
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Since (u, ) i1 (v,1), there is a first move of I that II cannot answer
appropriatly (i.e. after the first move II still does not have a winning
strategy). Without loss of generality we assume that this first move is
in w. Thus there is an si;1 such that for all 5., we have

(U, §8k:+1) Phtin (% ﬁk+1>-

Induction yields:
(4, 85k11) FErrrn (U, tp).

We now fix this sg1. For all £ there is thus a formula ¢, (Y1, -y Uky1) €
Lj1,, such that

(uv §3k+1) ): ¢tk+1 (*)
(Uv {tk+1> b& wtk+1 (**)

From () it follows that oy, , = Jypq1.1y, ., satisfies (u,5) = ¢y,
Unfortunately, (++) does not imply (v,?) }£ ¢,,,. The reason is that
there may be a t # ty4; such that (v, t) = Vs -

Instead of ¢, we consider the formula

¢ 1= Yk /\ Yty (3.1)

1<tp+1 <]

Because of (%) we know that (u, §) = . Because of (xx), for every ¢4,
there is one conjunct in ¢ that is not satisfied if we substitute y;,1 by

tprr. Thus (v, 1) . .

Note: Lemma 3.25 also holds for infinite words. To obtain a finite conjunc-
tion in the definition of ¢ in (3.1), one uses the fact that every formula in
Lj41, is equivalent to a formula in the finite set I'y1 g .

This finishes the proof of Theorem 3.16. Since not all regular languages
are star—free (example a(aa)*) there are regular languages that cannot be
defined by formulae of PL1. To obtain all regular languages, we must add
quantification over unary predicates (see Example 1.28). We will not show
this here, but later on we will show it for the case of infinite words.
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Simple application: a decidability result in logic
Theory of linear orderings

{ VaVyVz(x <yAy<z—x<2)
V.= (xr < x)
VeVy (r<yVe=yVy<uz)} linear

Lin = } strict partial order

Proposition 3.26 Let ¢ be a closed formula of PL1 that contains only the
extra—logical symbols <,=, P;,... P, (unary). Then it is decidable whether
Lin U {¢} has a finite model.

Proof: We know that L(p) is a star—free language. The proof of Theo-
rem 3.9 is constructive, i.e., given a formula ¢, we can effectively construct
a star—free expression (using finite languages, Boolean operations, and con-
catenation) for L(y). In principle, this is due to the fact that the finite set
', from Prop 3.12 can effectively be constructed (and thus the = ,—classes,
the formula py, ...)

It is easy to see that L(p) # 0 iff Lin U {¢} has a finite model. The star—
free expression for L(y) can be transfered into a regular expression for L(p)
(closure of Regy, under N, ). For regular expressions, the emptiness problem
is decidable. .

Sometimes, one would like to consider also infinite models of Lin. This is
one motivation for also considering infinite words.
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Infinite words and
Buchi—automata

Before introducing infinite words formally, let us reconsider finite words. Let
¥ be an alphabet. A finite word v € X1 is a sequence u = ag -+ -ap_; of k
elements a; € . One can view v as a mapping

w:{0,....k—=1} = X: i—aq

Thus finite words are mappings from an initial segment of the natural num-
bers into the alphabet. Infinite words are mappings from the set of all natural
numbers into the alphabet. Since we are only interested in the ordering of
natural numbers (and not in the arithmetic operations), we denote the nat-
ural numbers by w (omega) (w is the order type of the natural numbers).
Definition 4.1 1. An infinite word over ¥ is a mapping « : w — X.

2. X¥ denotes the set of all infinite words over X.

3. Subsets of X¢ (i.e. sets of infinite words) are called ?w-langauges@w—

languages

We will often write infinite words as oo = apajasas - - - where a; = a(i).
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Example 4.2 ¥ = {q, b}

ali) = a if 7 is even
] b ifiodd

« can be written as o = ababab- - - .

Some operations on infinite words and w-languages:

Segment: if o : w — ¥ is an infinite word then

e a(m,n) is the finite word a(m)---a(n)

e a(m,w) is the infinite word a(m)a(m + 1)a(m +2)---.

Concatenation: let w = a; - - - a,, be a finite word and o = a(0)cr(1) - -+ an
infinite word. Then w - « is the infinite word

ap - apa(0)a(l)a(2) - --

Note: It does note make sense to concatenate two infinite words.
As usual, concatenation can be extended from words to sets of words

Infinite iteration: let L C X* be a set of finite words
LY :={a € X | a=wywyw,--- for words w; € L\ {€}}
Example: L = {ab}

L¥ = {abababab - - - }. We often write L* = (ab)®.

Limit: let L C >* be a set of finite words.

lim L = {« € ¥¥ | there are infinitely many n that «(0,n) € L}.
Example 4.3 ¥ = {qa, b}.

1. L =a*b: lim L = () since any infinite word can have at most one initial
segment in a*b.

2. L =>ba*: limL = {baaa---} = ba”

3. L= (a*bb*)* : lim L = {a € £¥ | after each occurrence of a in « there
eventually follows an occurrence of b}

March 3, 2005 57



CHAPTER 4. INFINITE WORDS AND BUCHI-AUTOMATA

4.1 Biichi-automata and w—regular languages

Automata working on infinite words are defined like the “usual” finite au-
tomata. The distinction comes in when defining the acceptance condition.

Definition 4.4 A Biichi-automaton is a (non—det.) finite automaton A4 =
(Q, %, I,AF), ie.,

e () is a finite sets of states

Y is a finite alphabet

e [ C (@ is the set of initial states
e A C (@ xX¥ x(@Q is the transition relation

e F C ( is the set of final states

Since we are interested in infinite words, we consider infinite paths qo — 4
G 24 o 4 q3 —2 4 qu- - where (g;, i1, ¢iv1) € A. The label of this
infinite path is the infinite word ajasasay - - -.

For finite paths, we said that they are successful if
i) el
11) qn € F

For infinite paths, there is no such final state ¢,. Instead, we require that
final states are reached infinitely often.
The infinite path gy — q1 —= ¢» — ... is called successful iff

i) el

ii) There are infinitely many i such that ¢; € F

The Biichi-automaton A accepts the w-language
L,(A) = {a € X¥| «is the label of a successful path in A}.

Such an w-language is called Buchi—recognizable.
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Example 4.5 ¥ = {a,b, c}.

1. ./413

L,(A;) = {a € 3¢ | after every a there eventually is b}

The letter a leads to state (2). From (2) the accepting state (1) ist only
reached through b.

2. ./422
b, c a
b, c

O—@_ =

b, c

L,(As) = {a € ¥ | between two consecutive a’s there is
an even number of b’s and ¢’s}

It is easy to see that L, (Az) = Lo.

To investigate the languages accepted by Biichi-automata more closely, we
introduce some notation.

Let A = (Q,%,I,A, F) be a Biichi-automaton and p,q € Q. We view A
as a finite automaton where p is the initial and ¢ is the final state. This
automaton accepts the language

L,,:={w € X" | w is the label of some finite path from p to ¢ in A}

Thus, L, , are regular languages.

Lemma 4.6

LA = |J Ly Ly,

el feF
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Proof:

“C”

“D”

Let a = ajasazay - - - € L,(A). By definition of L, (A) there is a path
I3 q 540 3540 3540 254 - such that infinitely often
¢; € F. Since F'is finite, there is a single state f € F' such that there
are infinitely many indices 7, < iy < i3 < --- with ¢;, = f. Thus,
we have ay---a;, € Lgy ¢ and a;,41---a;,., € Lys\ {c} (v > 1). This
shows that o € Ly, - LY , where go € [ and f € F'.

Let a = wowywows -+ where wy € L;y and w; € Ly \ {e} (i > 1).
Thus, the path i —% 4 f —54 f —4 f —>4 -+ - is a successful path,
which shows that o = wywjwaows - - - € L, (A). n

The next lemma states simple closure properties of Biichi—recognizable lan-
guages.

Lemma 4.7

1.

2.

3.

If U C ¥* is regular, then U% is Biichi-recognizable.

It U C ¥* is regular and L C ¥ is Biichi-recognizable, then U - L is
Biichi-recognizable.

If Ly, Ly C ¥ are Biichi—recognizable, the so are L; U Ly and Ly N L.

Proof:

60

. Recall that U = {a € 3¢ | @ = wqugug - -- with u; € U\ {e}}. f U is

regular, then U \ {e} is also regular. It is easy to see that there is an
automaton A for U \ {e} that satisfies the following:

e A= (Z,Q,{q},A,F),ie. A has a single initial state.

e for all « € &, ¢ € @ we have (¢,a,q) &€ A, i.e., g cannot be
reached.
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Let A be such an automaton for U \ {¢}.
We define A’ := (2,Q, {q}, A", {q}) where

A" = AU{(Q7G7QO)|3f€F: (Q7a7f)EA}‘

It is easy to show (!) that L, (A") = UY.

Note: the condition that ¢ is not reachable is necessary (!).

2. Let A = (Q1,%,11,A1,F1) be a finite automaton for U and B =
(@2, %, I, As, F5) be a Biichi-automaton for L. We may assume that

QiNQy=0.

C = (QUQ@y, X, I' A’ Fy) where

[
= ]1U{12 if N F A0

A= AUAU{(gaq)|3feR

i (Q7a7f)€A1
o €}

It is easy to show that L,(C) =U - L.

3. Union: Exercise!

Intersection Let A; = (Q;, %, [;, A;, F;) be a Biichi-automaton for
L; (i € {1,2}). We define

Bi=(Q1x Q2 x{0,1,2},5, 1) x I, x {0}, A, F)
where . .
A= {((QI7 q2, Z)a @, (QL qavj)) |
- (Q17G7Q1) € A1 and ((]276%(15) € AZ
— i=0ANq el = j=1
i=1NgheF, = j=2
1=2 = j5=0
otherwise, i=3j}
This means the following: we start with 0 in the 3" component. If

we reach for the first time some f; € F}, then the third component
becomes 1. If after that we reach for the first time some f, € F,
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then the third component becomes 2 and immediately after that
0. If we reach infinitely often elements of F} and infinitely often
elements of F3, then we go through this round infinitely often.
Thus, we have infinitely often in the third component 2. Thus we
must define:

Fi=@Q1 x Q2 x {2}

Proposition 4.8 [Biichi, 1962]

1. An w-language L C ¥ is Biichi-recognizable iff there are regular lan-
guages Uy, ..., Uy, Vi,...,V, € X" such that

L:LmJUi-V;w.

=1

2. We can assume without loss of generality that V;-V; C V.

Proof:

“=" of 1) as well as 2) follows from Lemma 4.6:

L= U Li,f-L(}})f and Lf’f*Lf,fgLf’f.
i€l feF

“<” of 1) is an immediate consequence of Lemma 4.7. ]

Because of this close connection to regular languages, Biichi-recognizable
languages are called w-regular. If U;, V; are given by regular expressions and
if L=",U;- VY, then we call |J;*, U; - V¥ an w-regular expression for L.
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Example 4.9 : consider the automaton A, from Example 4.5:

b, c a

b, c

O——@_=(

b, c

L171 = (bUC>*7
LLQ = (b U C>* A L272,
Ly = (aU((bUc)-(bUC)))T,

L,(Az) = Ly1-LY UL, L3,
= LY ULy L3,
= ((buce))?U(dUc) ~a-Lay- L3,
vy = v
Uu-u“=0u"
= (bU)*UUe) -a-(aU(bUc)-(bUc))”.

The characterization of Biichi—recognizable languages also shows that the
emptiness problem is decidable.

Proposition 4.10

1. Given a Biichi—automaton A, we can effectively decide whether L, (A) =
() or not.

2. It L,(A) # 0, then L,(.A) contains an ultimately periodic word, i.e. a
word of the form wvvvv--- for u € £* v € UF.

Proof:

1. Let A = (Q,%,I,A,F). Then Lemma 4.6 says that L,(A) =
Uicr.ser Lig-Lyp- We know that, L, (A) # 0 iff thereisani € I, f € F
such that L; y # 0 and Ly \{e} # 0. There are finitely many such pairs
i, f, and for each pair L; ; and Ly \ {¢} are regular. The emptiness
problem for regular languages is decidable. This shows 1.
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2. If L,(A) # 0 then thereisani € I, f € F,u € ¥* and v € X7 such that
u € Liyand v € Ly \ {e}. But then uwvvvv--- € Ly LY, C L,(A).

What about the equivalence problem “L; = Ly”7?

For regular languages, decidability of the equivalence problem follows from
the decidability of the emptiness problem since the class of regular languages
is closed under U,N,~:

For w—regular languages, we still must show closure under —.

How can one show closure under complement for regular languages?

1. Make the finite automaton deterministic (power set construction)

2. In the deterministic automaton, exchange final states with non—final
states.

For w—languages, neither 1. nor 2. works.

Example 4.11 Let ¥ = {a,b}. The non—deterministic Biichi-automaton
shown below accepts the w-regular language L = (a U b)*b*.

This language cannot be accepted by a deterministic Biichi-automaton.

Proof: Assume that A = (Q, X, qo, 0, F) is a deterministic Biichi-automaton
for L. Deterministic means: ¢ : Q x ¥ — @ is a function. Since ab®” € L,
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k
there is a k1 > 0 and a f; € F such that g MA f1. Since abftab” € L and
A is deterministic, there is a k5 > 0 und f5 € F such that

bk1 bk2
qo a—>A fi a—>A fo.

Note that this is only true since A is deterministic!
By iterating this argument, we obtain &y, ko, k3, ... > 0 and f1, fo, f3,... € F
such that

abk1 abk2 ab®3 abk4
Qo —Afi —afo—afs—afa-.

Thus, a = ab**ab*2ab**ab* --- € L,(A). However a € L since it contains

infinitely many a’s. .

Example 4.12 Even for deterministic Biichi—automaton, exchanging final
states states with non—final states does not work. Reconsider the automaton
A; of Example 4.5.

Ali

L,(A1) ={a € {a,b,c} | after each a in « there eventually is b in a}.

() . ()
b, c a a,c
/\
—(J_  ©@

b
We have (ab)¥ € L,(A;) N L,(A;), and thus L, (A;) # L,(A;)

Example 4.11 shows that the class of languages accepted by deterministic
Biichi—automata is strictly smaller then the class of w-regular languages.
The next proposition characterizes this class.
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Proposition 4.13 For L C X the following are equivalent:

1. L is accepted by a deterministic Biichi—automaton.

2. L =1limU for a regular language U.

Proof:

“1— 2”7 Let A= (Q,X%,q,d, F) be a deterministic Biichi-automaton with
L =L,(A). Viewed as a finite automaton, A accepts a regular language

U:=L(A).

Claim: For a € ¥¢ the following are equivalent:

i) o€ L,(A).

ii) a € limU, i.e., infinitely many initial segments of a belong to U.
This shows L = lim U. It remains to prove the claim:

i)—ii) a € L,(A) = there are fi, fo,... € F and uy, us,... € ¥ such
that qo &A f1 %A f2 ﬂ)A tee. ThUS, Uy, U1U2, U1U2U3, ... ale
initial segments of o that belong to U.

ii)—1) Let {uy, ujus, ujugus, ...} be initial segments of a that belong
to U = L(A) where u; € ¥ for i > 1. Since A is deterministic,
this means that there are fi, fo, f3... € F with qp —=4 fi —>4
fo =54 f3 — 4 ---. Thus a = ujugusuy - - € Ly(A).

“2— 1”7 Let L =lim U for a regular language U. Let A be a deterministic
finite automaton for U. Viewing A as a Biichi-automaton yields an
w-regular language L,(A). Now i) < ii) from above shows that L =
limU = L,(A), and thus L is accepted by a deterministic Biichi—
automaton. "
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Corollary 4.14 The class of languages accepted by deterministic Biichi—
automaton is not closed under complement.

Proof: In Example 4.11 we have shown that L = (a U b)*b” is not accepted
by a deterministic Biichi-automaton. What is L7

L = {a,b}* \ L consists of those words a € {a,b}* such that « contains
infinitely many a’s. Thus, the following is a deterministic Biichi—automaton
for L:

Another way of showing that L is accepted by a deterministic Biichi-automaton
is the following:

L =lim(b*a)*

4.2 Closure under complement

The class of w-regular languages is closed under complement. However, the
proof is more complicated than the one for regular languages.

Main Theorem 4.15 If L C ¥¥ is w-regular, then ¥\ L is also w-regular.

Idea underlying the proof: we show that L und L can be written as a finite
union of languages U - V¥ where U,V are regular languages. The languages
U,V are obtained as equivalence classes of a congruence ~ 4of finite index
where A is a Biichi—automaton for L.
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Let A= (Q,%,I,A, F) be a Blichi-automaton with L,(A) = L. We write
P im ¢ to indicate there is a path in A from p to ¢ with label w that

contains at least one state from F. We define:

. F
Ly ={we= [p —aq}
The languages Lﬁ , are regular since

F
Ly, = U Lpy-Lyg
feF

Definition 4.16 ~ 4 is defined as follows: for all u,v € ¥*

u~agv it VpgeQ 1)p —aq iff p-—aq

F . F
2)p —aq M p—uq
u v

Lemma 4.17 ~ 4 is a congruence relation of finite index.

Proof:

1. Obviously, ~ 4 is an equivalence relation (since “iff” is reflexive, tran-
sitive, and symmetric).
Congruence: u ~4 v = zuy ~ 4 xvy for all words x,y.
F
Assume that u ~4 v and that p —— 4 ¢. We want to show that this

Uy

implies p im q. There are states p/, ¢’ such that p —4 p/ —4 ¢ —> yq.

VY

Case 1: p im o

Since u ~4 v and p' — 4 ¢, we know that p' ——4 ¢, and thus
F ;) v )Y . F

P —=4pP —Aq¢ —Aaqle. D ——a (.
X

VY

Case 2: ¢ im ¢ can be treated similarly.
y
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Case 3: p/ im q'. Since u ~ 4 v, this implies p’ im ¢, and thus
u v

Ty

P ——A Q.
F

F F
Thus, in all cases p ——— 4 ¢ implies p —— 4 ¢.
Tuy zvY
The other cases can be handled similarly.

2. Finite index: the ~ 4—equivalence class of w is uniquely determined by
. . w F

the following pair of sets: ({(p,q) [P —a ¢}, {(p,a) | P —a a})
w

Thus, there are at most 219%Ql. 21@xQl + ,classes. .

How do the ~ 4—classes look like?
Lemma 4.18

L. [w] :mp,qu Lp,qmmp,qu mﬂﬂp,qeg Lg,qmnp,qEQ qu.

w € Lpg w¢ Lpg we Ly, wé Ly,

2. In particular, the ~ 4—classes are regular languages.

Proof:

2. is an immediate consequence of 1. since the languages L, , and Lﬁ g are
regular, and regular languages are closed under N and ~.

1. “C” Let u € [w], ie. u ~q w. Ifw € Ly, (Lpg LY @), then

»,q°
CREL
u€ Lyg (Lpg Ly g L y)-

“D” Assume that u is in the intersection on the right—hand side. We
must show u ~ 4 w.

w u
op —uq=>weEL,,mu€l,,=>p —4aq
op%A g=>we€Ll,,=uecl,,=p 7@,4 q.

e 5 can be treated in the same way. .
w
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Proposition 4.19 Let A be a Biichi—automaton.

1. For all ~4—classes U,V we have:

a) UVY N Ly(A) £ 0= UV C L,(A)

b) UV® N L, (A) # 0= UV® C L,(A)

2. For every a € X% there exist ~4—classes U,V such that a € UV¥.

First, we show that this implies that L, (A) is w-regular.
1. and 2. of the proposition imply that

o L,(A) = J ouw

U,V ~ g—classes
UV¥ C Ly (A)

oL, (A) = J ow
U,V ~ g—classes
UV® C Ly (A)

The non—trivial part is the inclusion “C”, which needs both 2. and 1.

Since the ~ 4—classes U,V are regular, this shows that L, (A) is w-regular.

We could prove the proposition in an ad hoc manner, but it is more elegant
to use a nice combinatorial result: Ramsey’s theorem.

Definition 4.20 For a set M, we denote by [M]* the set of all 2-element
subsets of M. Let [M]* = AU Ay U---U A, be a partition of [M]? into n
disjoint classes. The set X C M is called homogeneous for this partition if
there is an 7,1 <4 < n, such that [X]> C A;.

Example: [N]?=A U B where

A = {{i,j}|i#jandi=jmod 2}
B = {{i,j}|i#jandijmod 2}

G = {ieNN|iiseven} are both homogeneous since
U = {jeN|jisodd} [GPCAand[UPPCA
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Proposition 4.21 [Ramsey| Let [NJ*> = A; U Ay U---U A, be a partition
of [IN]2. Then there is an infinite set X C IN that is homogeneous for this
partition.

Proof: see J.G.Rosenstein: Linear Orderings, Academic Press, 1982, p. 111,112.

Proof of Prop. 4.19

2. Let o € ¥, Together with ~ 4, a defines a partition of [IN]%.
Let Uy, Uy, ..., U, be the (finitely many) ~ 4—classes.

A, ={{i,j} |i<jand a(i+1,5) € U,}.

Since every word «(i+ 1, j) belongs to one of the ~ 4—classes and since
the ~ 4—classes are disjoint, [N]*> = A;UA,U---UA, is a partition.
By Ramsey, there is an infinite X C IN that is homogeneous for this
partition, i.e. there is a k,1 < k£ < n such that for all 7,7 € X with
i < j we have a(i+1,7) € Ug.

Since X is infinite, there is an infinite sequence iy, 1s,3,... in X such
that i; +1 < ;1. Then we know that a(i; +1,i;41) € Ug \ {e}. Let
U be the ~ 4—class of «(0,7;). Then we have

a=«a0,i)aliy + 1,ix)a(ia + 1,i3) ... € U - UY.

1. Let « € UV¥ N L,(A). This means

i) a =wuvivyus--- where u € U and v; € V' \ {€}.

ii) There is a successful path
I 3 g0 —=a @1 —24 @2 —Aq3 —a

with label oo = wvyv9v3 - -

Since this path is successful we reach infinitely often a final state. Thus
there are infinitely many i > 1 such that ¢; ——=4 ¢i+1.
F

Let 5 € UV¥ be arbitrary. Then /3 is of the form 5 = u'v{viv} - -+ with
u' €U andv; e V\ {e}.
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Since U and V are ~ 4—classes, we know that u ~4 u' and v; ~4 v;'.
Thus there is a path of the form ¢q u—’m 0 im 02 U—ém q3 im
with label 8 = wv|v)v} - - - in A such that there are infinitely many i > 1
with ¢; %A ¢i+1. This shows that 8 € L, (A).

This shows a) of 1. Part b) of 1. is an immediate consequence: assume
that o € UV¥ N L, (A), but there is § € UV¥ N L, (A). Now a) implies

a€ L,(A).

Corollary 4.22 For every Biichi-automaton A we can effectively construct

a Biichi-automaton B such that L, (B) = L,(A).

Proof:

1. The ~ 4-classes (to be more precise: finite automata accepting them)

can effectively be constructed: Lemma 4.18 shows how they can be
obtained from the languages L, , and L7 .

. For a given pair U,V of ~ 4 —classes we can decide whether UV“ N
L,(A) # 0. In fact, the emptiness problem for w-regular languages is
decidable (Prop 4.10).

. For finite unions of the language UV¥ we can effectively construct a

Bichi—automaton.

Corollary 4.23 The equivalence problem for w-regular languages is decid-

able.

Proof:
L,(Ay) = L,(Ay) iff

(Lo(A) \ Lo (A2)) U (Lo (A2) \ Lo (A1) = 0

o

for this we can construct a Biichi—automaton.

The emptiness problem for Biichi-automaton is decidable (Prop. 4.10).
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4.3 Muller-automata

We know that deterministic Biichi—automaton are weaker than non—deterministic
ones. Can we get an automata model where the deterministic automata are
as powerful as non—deterministic Buichi—automata?

Definition 4.24 [Muller-automata] A Muller-automaton is of the form
A=(Q,%,I,A, F) where

e (0,%, I, A is as for Biichi-automata.

e F C 29 is a set of sets of final states.

The infinite path py — 4 P1 —4 pa —+4 --- is successful iff

e po€El

o {p € Q| there are infinitely many i with p = p;} € F.
L,(A) ={a € ¥¥ | a is the label of a successful path in A}.

Example 4.25 L = (a UDb)*b.
In Example 4.11 we have shown that L cannot be accepted by a deterministic
Biichi-automaton. The following is a deterministic Muller-automaton for L:

b
T
F={{2}}
\a/

If the set of states reached infinitely often is {2} then (D) is reached only a
finite number of times. Thus, we have only finitely may a’s.

Note: considered as a Biichi-automaton with F' = {2}, this automaton also
accepts words not in L, like (ab)®.
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Proposition 4.26 For an w-regular-language L the following are equiva-
lent:

1. L is w-regular.

2. L is accepted by a deterministic Muller—automaton.

Proof:

“2—1” is simple. Let A = (Q,%,qo,d,F) be a deterministic Muller—
automaton. Then we have:

L,(A) = U ﬂ lim Ly, , N ﬂ lim Ly, ,

FeF \qeF 1€ Q\F

q is reached infinitely often

lim L, , contains exactly those words that label paths in .4 on which ¢
is reached infinitely often. This is only true since A is deterministic.

We know that the languages lim L, , are w-regular (Prop. 4.13). The
w-regular languages are closed under U,N,~.

“l — 2” is as hard as showing complementation for Biichi-automata. Rea-
son: it is easy to show that the class of languages accepted by deter-
ministic Muller-automata is closed under complement. We don’t give
the the proof for “1 — 2” here. .

Proposition 4.27 If L C ¥¥ is accepted by a deterministic Muller-automaton,

then so is L.

Proof: Let L = L,(A) for a deterministic Muller—automaton A = (Q, ¥, o,
6, F). It is easy to see that B = (Q,X, ¢, 6,29 \ F) accepts L. .
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Infinite words and logical
formulae

5.1 S1S logic and w-regular languages

Goal: describe a set of formulae that can exactly define the w-regular lan-
guages.

Just as in the case of finite words, first—order predicate logic is not enough
to get all w-regular languages.

Definition 5.1 Formulae of monadic second-order logic of one successor
(S1S) are built using:

e n unary predicate symbols Py, P, ..., Py,
e a unary function symbol s,

e a constant symbol 0,

e a binary predicate symbol =,

e a binary predicate symbol <,

e Boolean operations A, V, ,
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e first-order quantifiers dz, Vo ranging over elements of the domain

e second-order quantifiers 3.X, VX ranging over subsets of the domain
As interpretation domain we take the natural numbers w, where we interpret

e Jas O
e s as the successor function: n— n +1
e = as equality

e < as the usual ordering on w

As in the finite case we take as alphabet ¥ = {0,1}".

An interpretation PL, PL, ..., P! of the unary predicate symbols corresponds
to an w—word

a=a(0)a(l)a(2)--- € X where

‘ 1 ifmePp!
a(m) = (b, - -, b, ) With by, _{ 0 ifmgP

For a closed S1S—formuale ¢ and o € ¥ we write a | ¢ to say that the
interpretation corresponding to « makes ¢ true. The w-language accepted
by ¢ is defined as

L,(p) ={a €X[a ¢}
Example 5.2 Let n =1, ie. ¥ =1{0,1}.
1. ¢ = P(0) A (V. Py (x) = =P (s(x))) A (Vo. =Py (z) = Pi(s(2)))

Ly (p) = {10101010- - - } = (10)*

2. Ly = {a € X% | after every 1 in « there eventually is 0}

For the formula ¢; = Va.(Pi(x) = Jy.o < y A =Pi(y)) we have
Lw(@l) = Ll-
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3. Ly = {a € ¥¥ | between two consecutive 1s there is an even number of
0s}

po =VaVy.(x <y A Pi(z)\NPi(y) A\Vz.(z < 2Nz <y = ~P(2)))
=3AX.FYVa((r<zAz<y) =
(=(X(2) AY(2))A
(X(2) = Y(s(2)) A (Y(2) = X(s(2))A
X(s(x)) A X(y)))-

As in the finite case, we use @ (z) as an abbreviation for the formula that
says that a € X is at position x.

Next we show that we can dispense with the symbols 0 and < without losing
expressive power.

Lemma 5.3 Both 0 and < can be expressed in S1S using the other symbols.

Proof:

e v =0 is equivalent to =3y. (y < x)

e v < yis equivalent to 3X. (X () A X(y) AV (X(2) = X(s(2)))).

Proposition 5.4 For an w—language L C ¥ the following are equivalent:

1. L is w-regular.

2. L = L,(p) for a closed S1S—formula ¢.

Proof:

“l1—2” Let A = (Q,%,I,A,F) be a Biichi-automaton such that L =
L,(A). We express the existence of a successful path with the help
of an S1S-formula. Let @ = {q,...,qn} be the states of A. For
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each state ¢; we introduce a second—order variable Y; with the intended
meaning:

Yi(z)= at position x in the path we have state g

3Yy - - - 3Y,, (Vx. /\ =(Y;(x) A Y](x))> A the sets are disjoint

0<i<j<m

\/ Y;(0) A the path starts with an

g€l initial state
V. \/ Yi(2)AQq () the transition from g¢; at
(¢i,a,q;) €A x with a to ¢; at s(z)
NY;(s(z)) A must be admissible in A
\/ V. Jy. (x < y ANYi(y)) one of the final states is
GEF reached infinitely often

By construction, a word a € X* satisfies this formula iff there is a
successful path in A with label a.

“2 — 17 First, we transform S1S—formulae into an appropriate normal form:

78

1. These formulae contain only second—order varibales (no first—order
varibales)

2. Atomic formulae are of the following form:
e X; C X, (with the semantics Va. X;(x) = X,(2))
e Succ(X;) = X, (with the semantics that X; and X; are sin-
gleton sets {n;} and {n;} such that n; =n; +1)
Formulae that are built from these atomic formulae using Boolean op-

erations and second—order quantifiers are called S1Sg—formulae.

Claim: Every S1S-formula can be transformed into an equivalent
S1Sg—formula.

Proof of the claim:

i) We have already seen that 0 and > can be eliminated.
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ii) Nested applications of s can be eliminated:
T = S(S(S(y)))

1

m>

is equivalent to
1 Fymor (o= s(y) Ay = s(y2) Ao Aymer = 5(y).
iii) Thus we may assume that all atomic formulae are of the form:
r=y, s(x) =y, Pr), X(x)

In the final step, we use the following abbreviations:
e X =Y for “XCYAY CX”
e X #£Y for “~(X =Y)"
e Singleton(X) =

Y (YCXAY EXAVZ(ZCX=(Z=XVZ=Y))

X has exactly one strict subset, which is the case iff X is a
singleton set.

iv) First—order varibales can be eliminated as illustrated by the fol-
lowing example:

Vo dy.s(x) =y A Z(y)
is transformed into
VX.Singleton(X) = 3Y. (Singleton(Y") A Succ(X) =Y AY C Z).

s Claim

We show by induction on the structure of S1Sy—formulae that they
define w-regular languages. We also consider S1Sy—formulae with free
second—order variables. When defining languages these free varibales
are treated like unary predicate symbols: e.g. Y. (X CY AP, CY)
yields an w-language over ¥ = {0,1}* since P; and X occur free.

Induction base: atomic formulae of the form X C Y and Succ(X) =
Y yield w-languages over ¥ = {0,1}* (we assume that the first com-
ponent stands for X and the second for V).

L,(XCY) = {a=apaiay---|where a; = (b;,b;,) we have
b“:1:>bl2:]_}
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Thus, L,(X CY) is accepted by

(0,0),(0,1),(1,1)

Ce

L,(Suce(X)=Y) = {a=apxay---| where o; = (b;,,b;,) we have that
there exists a & such that
o b, =1AN b(k+1)2 =1
ebj =0forj#k
e b, =0 forj#k+1}.

Thus, L, (Succ(X) =Y) is accepted by

(0,0) (0,0)

1 (9
Lo N

Induction step: It is sufficient to consider —, Vv, 3.X.

i) Ly(—¢) = X\ Ly,(¢). By induction, we know that L,(p) is
w-regular, and thus X¢ \ L,(¢) is also w-regular (Main Theo-
rem 4.15).

ii) in principle, V corresponds to union. However, if ¢ = 1 V ¢,
then ¢ and o may be based on different predicates/second—order
varibales.

Example:

o( X1, Xo, X3) = 01(X1, Xo) V (X, X3)
——

free variables
or unary pred-
icates

Both ¢; and ¢, define a language over ¥ = {0,1}?, but the first
component for ¢y corresponds to X; whereas the first component
for @9 corresponds to Xo.
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We extend ¢, and @5 by the missing variables, e.g. 91 = 1 A X3 C
Xz and @ = o A Xy C X,

If A; is a Biichi-automaton for ¢;, then we obtain a Biichi—
N . (b1,b2,b3)
automaton for ¢; as follows: A; has a transition ¢ —— ¢’
(b1,b2)
iff  ——¢ in A;.

w——regular

i) o(X1,...,X,) = V.0V, X0, ..., X).
If A is a Biichi-automaton accepting L, ((Y, X1, ..., X)), then

we obtain a Biichi—automaton for L, (3Y.¢(Y, Xq,..., X)) by re-

. . (bo,b1, ..., bn) (b1, -, bn)
placing every transition ¢ —— ¢ byq¢ —— ¢ =

Example 5.5 (illustrates “2 — 17)
e=3Y.(X CY VSucc(Y)=2)

(0,0),(0,1),(1,1)

Ali

is an automaton for X C Y,

adding a component for Z:
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i@ mvo@
N
(1,0) 12/ (0,1) @

is an automaton for Succ(Y) = Z;

adding a component for X:

(0,0,0) (0,0,0)
(1,0,0) (1,0,0)
| )
0,1,00 (0,01
(17 170) b )

b )

A, U A, is an automaton for X C Y Vv Succ(Y) = Z. The automaton A for
¢ thus looks as follows:

0,0), (1,0)
' 0,1),(1,1)
(0,0) (0,0)
(1,0) (1,0)
WA
1 2
00 \_J 1) ®
(1,0) 1)

The proof of the proposition shows that for every S1S—formula ¢ we can
effectively construct a Biichi-automaton A such that L, (¢) = L,(A).

Corollary 5.6 Validity in S1S is decidable.

Proof: If ¢ is a (closed) S1S—formula, then ¢ is valid iff ¢ does not have
a model, i.e., L,(—p) = (. We can effectively construct a Biichi-automaton
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A with L,(—¢) = L,(A) and the emptiness problem for Biichi-automata is
decidable. -

The proof of Prop 5.4 can be modified such that it works for finite words.
Corollary 5.7 For a language L C ¥* the following are equivalent

1. L is regular.

2. L\ {e} = L(yp) for a closed S1S—formula ¢.

As introduced in Chapter 1.3, finite words correspond to finite interpreta-
tions. In the proof of “1 — 2”7 we have to take the different acceptance
condition into account:

“ \/ Ve dy.x <y AY(y)”
GEF
is replaced by

“ \/ Va. Max(z) = Yi(x)”
———

GEF abbrev. of s(z) ==
In the proof of “2 — 1” we use the closure properties of regular languages.

Corollary 5.8 For a closed S1S-formula ¢ it is decidable whether ¢ holds
for all finite models.

Note: there are formulae that hold in all finite interpretations, but not in
infinite ones.

Example:
AyVa. (v < y)

Definition 5.9 The w-language L C X% is called star—free iff L = J [, U;V¥
where U;, V; C ¥* are star—{ree.

Proposition 5.10 For an w-language L C ¥* the following are equivalent

1. L is star—{ree.

2. L = L,(p) for a closed formula of S1S not containing second-order
quantifiers.
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Chapter 6

Automata on finite trees

We consider trees where the number of successor nodes is determined by the
arity of the node label.

6.1 Finite trees

Example 6.1 ¥ = {+,-, —, x,y} where +, - have arity 2, — has arity 1, and
x,y have arity 0.

is a Y—labelled tree. The nodes can
uniquely be addressed using words
over the alphabet {0, 1}. Thus, the
tree t can be viewed as a partial
function

t:{0,1}* = %

with domain dom(t) = {¢,0, 1,00,
01,10} e.g. £(0) = -, £(10) = .
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Definition 6.2 Let ¥ be an alphabet and v : ¥ — w a function that assigns
with every a € ¥ an arity v(a) (alphabet with arity function). For n € w let
Y, ={a€eX|v(a) =n}. A X-tree is a partitial function ¢t : w* — ¥ whose
domain dom(t) satisfies the following:

1. ¢ € dom(t),

2. For all v € w* and 7 € w we have

wi € dom(t) iff v € dom(t) and i < v(t(u)).

1) means that every tree has a root.

2) says that every node # ¢ has a predecessor node and that every node has
the right number of successors.

A leaf of t is a node u € dom(t) such that v(t(u)) = 0, i.e. u does not have
successor nodes. The tree t is finite if dom(¢) is finite. By T we denote the
set of all finite trees over X. Let < be the prefiz relation on w*, i.e.

u< v iff I € wt with uu' = v.

Because of 2 in Def. 6.2, the set dom(t) for a tree ¢ is closed under building
prefix, i.e. v € dom(t) and u < v = u € dom(t).

Definition 6.3

1. A path through t is a maximal and totally ordered subset of dom(t).
In Example 6.1, {,0,00},{s,0,01}, and {e, 1,10} are all the paths.
{,00} is not maximal and {£,0,00,01} is not totally ordered.

2. The subtree of t at position u € dom(t) is the tree ¢, with

e dom(t,) = {v | uv € dom(t)}
o t,(v) =t(uv).

For example, to = 1=
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6.2 Automata on finite trees

A word w e Y* can be viewed as a finite tree over an 11 @
alphabet ¥ = ¥ U {«} where v(a) =1 for all a € ¥
and v(x) = 0. E.g. abb can be viewed as the tree:

0
| | o ()
A path with label abb of a finite automaton corre-
sponds to a labelling of the nodes of the tree with
states of the automaton: 00

a
° 000
w (o)

This can be generalized to trees with branching factor > 1.

Definition 6.4 An LR-tree automaton (leaf to root) A = (Q,%,1,AF)
consists of:

e a finite set of states @)

a finite alphabet ¥ with arity function

an initial assignment [ : ¥y — 2¢

a transition assignment A, which assigns to every a € ¥ of arity n > 0
a function A, : Q" — 29

a set of final states F'

A run of this automaton on the tree t € Ty is a mapping ¢ : dom(t) — @
such that
l(u) € Ag(L(u0),...,0(u(n —1)))

where a = t(u) has arity n.
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The ¢ run is successful ift
o ((u) € I(t(u)) for all leafs u,
e ()€ F.

The tree language accepted by A is
L(A) ={t € T, | there is a successful run of A on t}.

A is deterministic iff
o |[(a)]=1forallaeck
o |[Au(q1,q2,...,qn)|=1foralln>0,a€3,and q¢,¢,...,¢, €Q

In this case we write I as a function I : Xy — @ and A, as a function

Ag: Q"= Q

Example 6.5 ¥ =Y, UX; UX; where ¥ = {z,y}, 5, = {-}, S = {+, -}
A=(Q,X,1,A, F) where

o )=1{0,1,2},

o I(x)=1,I(y) =2,

e A (q) = —q mod 3,
Ai(qi,92) = ¢+ g2 mod 3,
A~(Q17Q2> = ¢ @2 mod 3,

o F={1}.

The automaton evaluates arithmetic
expressions with + = 1 and y = 2 mod-
ulo 3, and accepts if the value is 1.
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Just as in the case of words, non—det. automata can be transformed into
deterministic ones using the powerset construction.

Proposition 6.6 For a tree language L C T the following are equivalent:

1. L is accepted by a non—deterministic LR-tree automaton

2. L is accepted by a deterministic LR-tree automaton

(Exercise)

Instead of working from the leafs to the root, we can also work in the other
direction:

Definition 6.7 An RL-tree automaton A = (Q,%, 1, A, F) consists of

e a finite set of states @)
e an alphabet with arity function ¥
e aset I C () of initial states

e a transition assignment A that assigns to each a € X, for n > 0 a
function A, : Q — 29"

e a final assignment F': ¥y — 29,

A run of Aont € T is a mapping ¢ : dom(t) — @ such that

(((u0),...,lu(n —1))) € Ay(L(u)) where a = t(u) has arity n.
This run is successful iff

o ()€,
e ((u) € F(t(u)) for all leafs u.
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L(A) ={t € T | there is a successful run of A on t}.

A is deterministic iff

o [I|=1

o |[Ay(g)|=1foralln>0,a€X, and ¢ € Q

Proposition 6.8 For a tree language L C T% the following are equivalent:

1. L is accepted by an LR-tree automaton.

2. L is accepted by an RL-tree automaton

Proof:

“1=2" Let A=(Q,%,I,A, F) be an LR tree-automaton. We consider the
RL tree—automaton B = (Q, X, F, A’ I) where

Aig={(q1,.- . qn) | g€ Alqr, - qn)}

It is easy to see that any successful run of A on a tree t is also a
successful run of B on this tree and vice versa.

“2 =17 can be shown accordingly. .

Example 6.9 Let A be the LR—tree automaton of Example 6.5. The cor-
responding RL—tree automaton B = (@, X, I', A’, F’) is defined as follows

e ) =1{0,1,2}
d E:{(L’,y,—,—h'}?
. I'= {1}

e A(qg) = {{€Q|A(d)=q}
= {¢|—¢ mod3=q}={¢d c€Q|q¢ =—qmod 3}
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e Ai(q) ={(¢,q") | ¢ =d" +¢" mod 3},
e Afq) ={(¢,d") |a=¢q" - ¢" mod 3},
e F'(x) =1and F'(y) =2

Note: Although the LR—tree automaton A is deterministic, the correspond-
ing RL-tree automaton is not deterministic:

e.g. Ap(1) ={(0,1),(1,0),(2,2)}

We will show that deterministic RL-tree automata are weaker than non—
deterministic ones.

Example 6.10 Not every language accepted by a non—deterministic RL—
tree automaton can also be accepted by a deterministic RL-tree automaton.

E:{x?y, f } L=A )/\ ﬁ }
arity 0 arity 2 @

e The following non—deterministic RL—-tree automaton accepts L:

“4 = ({QO7QIan7Qy}a 27 {QO7QI}7A7 F)

non—det.

where
A(qo) {(qo, qy)}
Ar(qr) = {(ay, )}
Ap(g) = Ap(gy) =10
F(z) = {¢},
Fly) = {aq}

e Assume that B = (Q', %, {i}, A’, F') is a deterministic RL—tree automa-

ton for L. Let (¢',¢") = A% (i). Since C K € L, we know that
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¢ € F(z). Since F R € L, we know that ¢" € F(x). But
then B also accepts i 7A< ¢ L.

Deterministic and non—deterministic LR—tree automata as well as non—deterministic
RL-tree automata accept the same class of tree languages. Deterministic
RL-tree automata accept a smaller class.

Definition 6.11 The tree language L C T% is called recognizable iff it is
accpeted by an LR-tree automaton.

Example 6.12 There are non-recognizable tree languages. To show this, we
consider an alphabet ¥ with arity function such that || > 0 and |X2| > 0.
Thus 7% is infinite.

For f € ¥y we define L = {f(¢,t) | t € T} and show that L is not recogniz-
able.

Assume that L is recognizable. Let A = (Q, %, I, A, F) be a deterministic
LR~tree automaton for L. For every tree t € Ty, we consider the run ¢ on t
that labels each leaf u with ¢(u) = I(t(u)). Let ¢ = ((¢). Since @ is finite
and 7% is infinite, there are trees t # ¢’ such that ¢; = ¢». Consider the run
of A on the following trees:
(a) (b)
7 (@ qt) (@ qr)

AE AR

Since the tree in (a) belongs to L we have that Af(¢;,q) € F. But then the
automaton A accepts also the tree in (b), which does not belong to L.
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6.3 Regular tree languages

Recognizable languages of finite words can be described using regular ex-
pressions. A similar characterization can be shown for recognizable tree lan-
guages. To this purpose we must introduce appropriate operations on tree
languages.

Recall:

e ) € Regs, {a} € Regy, for alla € ©

e [,Ly € Regs, = L1 ULy, Ly - Lo, Li" € Regs,
Proposition 6.13

1. The empty tree language is recognizable

2. For every a € ¥y the language {(@} is recognizable.

Proof:
1. Use an LR-tree automaton with F' = (.

2. LR-tree automaton where:

e )=1{0,1}

e [(a)=1,1(b)=0forall be X\ {a}

© As(qi,--.yqn) =0 forall (qr,...q0) €Q", fE€T,n>0
o [F={1}

Proposition 6.14 The class of recognizable tree languages is closed under
union, intersection, and complement.

Proof: similar to the case of words

1. Union: take the union of the automata (Exercise).

2. Complement: use deterministic LR-tree automata and exchange final
states with non—final states. .
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Next, we define concatenation of tree languages.

Notation: a tree is written as f(t1,...,t,).

Definition 6.15 Let ¥ be an alphabet with arity function and let T =
(x1,...,2¢) be a k—tuple of elements of Xy.

1. For t € Ty and Ly,...,L; C T we define ¢t -* (Ly,..., L) C Ts by
induction:

[ ] tEEO: t:@ : tf(Ll,,Lk>:Ll
t # @) for all t
o t=f(ty,...,t,):

ET (Lo L) = (e t) |8 € 47 (L., L)}

2. For L, Lq,...,L; CTx we define

L7 (Ly,... L) o=t -7 (Ly,. . L)
tel

A tree in L -* (Ly,..., L) is obtained from a tree ¢t € L by replacing each
leaf with label @) by some tree in L;.

Example:

{ / (xv‘r)} ! {g’z)b} = {f(ava)v f(av b)v f(bv a)v f(bv b)}

€ X

Note: different occurrences if x; may be replaced by different elements of
L;. In particular:

(t,t") | t,t" € T}

{f(z,2)} " Tx = {f(t
(t,1) | t € Ts).

{r
# {f

Proposition 6.16 If L, Ly, L, ..., L; are recognizable tree languages, then

so L-" (Ly,...,Lg).
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Proof: Given an RL-tree automaton for L, Ly,..., L we construct an RL—
tree automaton for the concatenation.

here we continue
with the automata
for Ly and for L,

q1 € F(.Tl)

Idea:
dea ¢ € F(z3)

Let A= (Q,%, I, A, F) be an RL-tree automaton for L and A; = (QW, %, 1%,
AD F@) be an RL-tree automaton for L; (i = 1,...,k). W.lo.g. the sets
of states are disjoint. The following automaton

B=QuRWu...uW = 1, A F

is an RL—tree automaton for the concatenation.

o for a € ¥, with n > 0:

— for g € QY : Al (q) = Aaj)(Q)

—forgeQ: AL(g) =AU | J {AV(i)]ie 1}
qélvg(t;j)
e fora € Xy:

— for a & {xy,...,x}:
F'la) = Fla)UFY(a)UF®@@)u...uF®@)u
{g€Q|qe F(x;) for some j,1 < j <k and

f(”(a) A 1Y) £ Q}
@ e 1;

— fora € {&y,..., 2}
F'la) = FY@UFY@uU...uF®()u
{g€Q|qe F(x;) for some j,1 < j <k and
F(j)(a) NI0) £ 0}
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When defining regular languages, we will consider two special cases of the
general concatenation introduced in Definition 6.15:

1. Applying an f € ¥, & > 0, to tree languages Ly, ..., Lg:
f(Lyy oo Ly) i= f(og, o) W) (Lo L)
2. T =u,ie. tuple of length 1 : L-* L',
The Kleene-Star can also be generalized to tree languages:

Definition 6.17 Let L C Ty and x € ¥,. We define :

o L = {z}
Ln+1,x — Ln,x U L x Ln,x
5 — UnZO s

Proposition 6.18 If L is a recognizable tree language, then so is L*".

Proof: Let A= (Q,%,I,A, F) be an RL-tree automaton for L.

If ¢; € F(x), then we can either
stop or continue with an initial
state.

Idea:

We define B = (Q U {i}, X, I', A’, F') where {i} ¢ @) and
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e fora € X, with n > 0:

0 ¢ F(x
AL(q) = Aulq) U {,U A, (i) ZGFEx;
Ag(ﬁz(b 1el
e for all a € X
— a # x:
F'(a)=F(a)U{q e Q| qe F(x) and F(a)NI # 0}
@eL
— for a = a:
F'(x) = F(x) U {1}
o I'=TU{i}

Note: the state 1 in F’(x) and I’ ensures that (@) is accepted.

Definition 6.19 Let ¥ be an alphabet with arity function, Z a set of sym-
bols of arity 0 with ¥ N Z = (), and define ¥ := X U Z. Rey(Ts, Z) is the

smallest class of tree languages over ¥ such that
1. 0 € Reg(Tx, Z),
2. {o} € Rey(Tx, Z) for all x € y U Z,
3. Ly, Ly € Reg(Tx, Z) = Ly U Ly € Rey(Tx, Z),
4. Ly, Ly € Reg(Ts, Z) and z € Z = Ly -* Ly € Reg(Ts, Z),
5. L € Reg(Tx,Z) and z € Z = L** € Rey(Tx, Z),
6. n>0,fex,, Ly,....,L, € Reg(Tx, Z) = f(L1,...Ly,) € Reg(Ts, 7).

The language L C T% is reqular iff there is a set of auxiliary symbols Z of
arity 0 such that L € Reg(Tx, Z).
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Proposition 6.20 For L C T% the following are equivalent:

1. L is regular

2. L is recognizable

Proof:

“1 = 2” Follows from what we have shown.

“2=1" Let A=(Q,%,I,A, F) be an RL-tree automaton with L = L(A).
W.lo.g. @ is of the form {1,...,k} and QN = . We define Z := Q
(where ¢ € @ is assumed to be of arity 0). Let A" = (Q,XUZ, I, A, F")
where F'(q) = {¢}. Thus, subtrees can be replaced by a leaf ¢ if the
corresponding node in the run gets label gq.

For K C Q,0 < h<kandie€Qlet L(K,h,i) be the set of all trees
t € Tx ki such that there is a run ¢ of A’ on ¢ with

o ((e) =i
e ((u) < h for all u # ¢ that are not leafs
o ((u) € F'(t(u)) for all leafs u

L(K, h,i) consists of the trees that may have additional leafs labelled
with elements of K. A run of A’ on this tree that begins with ¢ must
stop with a state in F'(t(u)) for each leaf u (in particular, if t(u) = ¢
then ((u) = ¢) and the intermediate states must be < h. Obviously,
the following holds:
L(A) = L0, ki)
icl

Thus, it is sufficient to show that all the languages L(K, h, i) belong to
Reg(Ts, Z)

Induction base h = 0: In this case, L(K,0,i) cannot contain trees
having a node that is neither the root nor a leaf (since a run
must label such an intermediate node with a state ¢ > 0). Thus,
L(k,0,4) is finite. It is easy to see that finite sets of trees are
regular.
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Induction step h > 0: we have the following:

L(K,h+1,i) = L(K, h,i)U
L(KU{h+1}, h,i) "
LIKU{h+1},h,h+ 1) LK b b+ 1)

By induction and the definition of Reg(Tx,Z) this shows that
L(k,h+1,7) € Reg(Tx, Z)

€ LK U {h+1}, h,i)

e LIKU{h+1},h,h+1)

e LIKU{h+1},hh+1)

€ L(K,h,h+1)

Another interesting closure property of recognizable tree languages is closure
under alphabet renaming: Let S £2) be alphabets with arity functions and
¢ : S 5 £ a mapping, such that o(S5)) C P for all n > 0. For a tree
t € Ty we define p(t) € X3 as follows:

p(t) - dom(t) = S (t)(u) = p(t(u))

Proposition 6.21 If L C T},u) is recognizable, then sois ¢(L) = {¢(t) | t €
L} CTxw.
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Proof: Let A = (Q,XV I, A F) be an LR-tree automaton for L. Then
A = (Q,5® I'' A’ F) is an LR-tree automaton for (L) where

(2)

o fora € Xy
r'a= J 1),

a e Zgl)
p(a') =a

e forac 253), n > 0O:

A;(le"'vqn) - U Aa’(le---in)-

a €Y
pla') =a

Proposition 6.22 For regular languages, the equivalence and emptiness
problem is decidable.

Proof: Since the regular/recognizable tree languages are closed under Boolean
operations, the equivalence problem can be reduced to the emptiness prob-
lem.

Emptiness problem: Let A = (Q, X, I, A, F) be a deterministic LR-tree
automaton for the language L with |Q| = k.

Claim: L(A) # () iff there is a tree ¢t of depth < k with t € L(A).
Since ¥ is finite, there are only finitely many trees t € 1%, of depth < k. For
each of these trees we can effectively test ¢t € L(A).

Proof of the claim:

“e=” s trivial.
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“=" Let t be a tree of minimal size with ¢ €
L(A). Assume that A has depth > £, i.e.
t contains at least one path of length >
k. Let ¢ be a successful run of A on t.
Since we have only k states there are two
different positions u,u’ on the path such

that ¢ := ((u) = ((u').

tl

If we replace in ¢ the subtree t,, by t,/, then
we get a smaller tree t' for which A also
has a successful run. This contradicts the
minimality of ¢. .

Note: this yields an exponential algorithm for the emptiness problem. There
is a linear—time algorithm for the emptiness problem (Exercise).
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Chapter 7

Automata on infinite trees

For the sake of simplicity, we restrict the attention to binary trees, i.e. X is
an alphabet with arity function such that ¥ = Y,. All the results can easily
be extended to the general case.

An infinite tree over ¥ is a mapping {0,1}* — X. With 7¥ we denote the
set of all infinite trees over ¥. An infinite tree over ¥ is called w—tree. An
w-tree language is a subset of 1.

w-tree languages can be obtained by infinite iteration.

Definition 7.1 Let Z = {z1,..., 2} be a set of symbols of arity 0 and ¥
an alphabet of binary symbols. Let U, Uy, ..., U, C T 7 be tree languages
over ¥ U Z. The w—tree language

U (21,28) (U17 o Uk)w,(zq ..... 2k)

consists of all w—trees t € T¥ for which there exists a sequence ¢y, ;, %, ... of
trees in 13y,, such that

1. toeU
2. Forall i >0: ty €t;-Grom) (U, ... Uy)

3. t is the limit of the sequence, i.e. for all u € {0,1}* there is an m > 0
such that
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e u € dom(t,,) and t(u) € ¥ (i.e. u is not a leaf of t,,(u))
o t(u) =tn(u)

Example 7.2 Z = {z1, 22}, U = {f (21, 22) }, U1 = {g(21,21) }, Ua = { (22, 22)}

7.1 Biuchi— and Rabin—tree automata

Since our infinite trees have no leafs, our automata start at the root, i.e. they
generalize RL—tree automata.

Definition 7.3

1. A Biichi-tree automaton over the alphabet ¥ (with ¥ = ¥,) is of the
form A= (Q,%, I, A, F) where

e (), I, A are as for RL—-tree automata
e F1C @ is a set of final states
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2. A Rabin—tree automaton over the alphabet ¥ (with ¥ = ¥,) is of the
form A= (Q, %, I,A,Q), where

e ()X, I, A are as for RL-tree automata
e 0= {(Flle)v---v(anGn)} with F;, G; C Q

(Compare this to exercise 55.)

A run ( of a (Biichi- or Rabin-) tree automaton on the tree ¢t € T¢ is defined
as follows:

¢:{0,1}* — @ such that (¢(u0),l(ul)) € Af({(u)) where f = t(u)

u q="0(u)

(91, q2) € Ag(q)

O

q = 0(u0) g =Cl(ul)

Thus a run is itself an infinite tree over the alphabet @) (where all ¢ € @ have
arity 2). The run ¢ of a Biichi tree—automaton is called successful iff

o l(c) el

e every path in ¢ contains infinitely often final states

The run ¢ of the Rabin—tree automaton is called successful iff

o ((c) el
e for every path in ¢ there is an ¢ (1 <7 < n) such that

— the path contains infinitely often states from F;

— none of the states in (G; occurs infinitely often in the path
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Thus, the acceptance condition for Biichi/Rabin automata on w—words is
applied to paths in the infinite tree.

L,(A):={t € T | there is a successful run of A on ¢t}

L C T¢ is called Biichi—recognizable (Rabin—recognizable) iff there is a Biichi—
(Rabin-) tree automaton A such that L, (A) = L

Proposition 7.4 Every Biichi-recognizable language is also Rabin-recognizable.

Proof: Let A= (Q,X, I, A, F) be a Biichi tree—automaton with L = L, (A).
The Rabin—tree automaton A’ := (Q, %, I, A, {(F,0)}) obviously accepts L.

The following examples illustrate the difference between Biichi— and Rabin—
tree automata.

Example 7.5 ¥ = {a, b} and

Ly = {t € TY | there is a path in ¢ containing infinitely many a’s}.

We want to design a Biichi tree automata for L;.

Idea: the automata “guesses” the path containing infinitely many a’s

Al = ({ tlt, f ’ o‘Eer}’ Z’ {2}7 Al’ { lf ” on aE)ther})

the guessed paths seen a path
path

A, o={(f,0), (4, )} Ay i={(,0),(0,4)}
f={(f,0), (3, )} f={,0), (0,0)}

O—{(0,0)} O—{(0,0)}

The “guessed” path is labelled by states from {i, f} with label f immediately
after a node with a was reached. Thus the path in the run contains infinitely
many f’s iff on the corresponding path in the tree there are infinitely many
a’s. The other paths are labelled with O except for a finite initial segment.
Thus, such paths in the run contain infinitely often O.
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Example 7.6 ¥ = {a, b} and
Ly = {t € TY/ | every path in ¢ contains only finitely many a’s}.
Obviously, Ly = T¥ \ L;. The following is a Rabin-tree automaton for Lo:

A2 = ({27 f}v Zv {Z}v A27 {({27 f}v Q2}> where

Aaa i = A(f 1)} f means “have seen a”

fe= {060}

Agy 11— {(%2){ i means “have seen 0’

Q = A{C {ify »  {f} N

no condition f restricted to
.Orfli spatles sgen occur finitely
infinitely often  ,pren in each path

For every path, this path contains infinitely many a’s iff in the corresponding
run this path contains infinitely many f’s.

Proposition 7.7 The language L, of Example 7.6 is Rabin-recognizable
but not Biichi—recognizable.

Proof: It remains to show that L, is not Biichi-recognizable. Assume that
A=(Q,%,I,A, F)is aBiichi tree-automaton for Ly. Let n be such |Q] < n.
We construct a tree t™ : {0,1}* — ¥ as follows:

(n) o a uel,
" (u) { boudU, where
U, = {e} U {10 |my >0} U {17010 | my >0,my >0}

U ... U {1™01™0...1™0 |my >0...m, >0}

This tree contains infinitely many a’s, but in every path there are at most
n+1 a’s. Thus, t™ € L,.
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To reach an @ that is not at the

0 e root, we must go at least once to
1m1Q Q the right, and then to the left. The
next a is reached in the same way.
Q After going n times to the left, the
@ final a is reached.
1m1Q1m2

1m101m20/@\

Since t™) € L,, there is a successful run ¢ of A on t). We use ¢ to construct
a path in t(:

e let my; > 0 be minimal with ¢(1™) = f; € F. Such a final state exists

since every path in ¢ contains infinitely many final states.

e assume that mq,ma,...,m; > 0 (i < n) are already defined. Let
mis+1 > 0 be minimal with ¢(1™101™20---1™i01™+1) = f;.4 € F. This
defines my,...,m, > 0 such that the following holds:

@ S hEF
(b) 1mo1ms

1m101™m20 @
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Since |@| < n, there are i < j such
that f; = f;. Thus, we have the
following situation:

If we replace in ¢ the tree at
position uv by ", then we get
a new tree which still has a suc-
cessful run. If we iterate this an
infinite number of times, we ob-
tain a tree that is also accepted by
A and has a path containing in-
finitely many a’s. é .

Corollary 7.8 The class of Biichi—recognizable w—tree—languages is not closed
under complement.

Proof: L, is Biichi-recognizable, but L, = T¥ \ L is not. "

Proposition 7.9 The class of Rabin-recognizable tree-languages is closed
under complement.

The proof is quite involved. There are several approaches for proving this
(Handbook article by W. Thomas). Why is this harder to prove than for
Biichi—automata on words? The reason lies in the quantifier on paths in the
definition of a successful run:
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“For all paths the acceptance condition is satisfied.”
If we negate this, we obtain:
“There exists a path, such that the acceptance condition is not satisfied.”

In addition to transforming “not satisfied’ into “satisfied’, one must also
transform “exists a path” into “for all paths”.

7.2 Decidability results

Goal: reduce logical satisfiability problems to the emptiness problem for the
automata.

Thus, we want the emptiness problem to be decidable. We first show decid-
ability for Biichi tree—automata since the proof is simpler and also yields a
characterization of Biichi-recognizable tree-languages.

Proposition 7.10 The emptiness problem for Biichi-recognizable w—tree
languages is decidable.

First we show another result, from which Prop. 7.10 can easily be deduced.

Let A = (Q,X, I, A, F) be a Biichi tree-automaton, where F' = {f1,..., f. }.
Let ¢ : {0,1}* — @ be a successful run of A on the tree t € T¥. We
decompose t into finite subtrees, which are accepted by automata working
on finite trees.

Let u € {0,1}*. We are interested in where the run reaches for the first time
a final state below w:

D, :={w € {0,1}" | l(uv) € F for all ¢ <v < w}

Since D, is closed under prefix, it can be viewed as the domain of the tree.
This tree is finitely branching and it does not containing an infinite path
(otherwise ¢ would not be successful). Ko6nig’s Lemma implies that D, is
finite.

D} :=D,U{wo| o€ {0,1} Awe€ D, ANwo & D,}

u

By definition of D, we have ((wo) € F for all wo € D} \ D,.
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Example: consider a run of the Biichi tree—automaton of Ex. 7.5 on the
following tree:

F={8,71}

@
z EI
fD S

D. = {¢0,00} D, = {¢}
DF\ D. {1,01,000,001} D\ D, {o,1}.

For u € {0,1}* we define the finite tree ¢, : D — S U F

~ B tluw) if we D,
N l(uw) if we D\ D,

Thus, t, € Ts , F, where f € F is a symbol of arity 0.

Example: fe \@ h @
0 OO

For every ¢ € () we define the RL-tree automaton A, = (Q, SUF, {¢}, A, ﬁ)

where F(f) = f forall f € F.

Let L, := L(A;) C Txyp. Then the following holds: If ¢(u) = ¢, then
t € L,
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Example: successful run of A;

Conversely, it is easy to see that any element of L belongs to L, (A). Thus,
we have shown that L = L, (A).

Proposition 7.11 For an w-tree language L C T¥ the following are equiv-
alent:

1. L is Biichi-recognizable

2. There are recognizable tree languages Ly,...,L,, C Ts g for some
alphabet F' = {f1,..., f;,n} of symbols of arity 0 such that:

Proof:

“1 = 2” we have just shown.

“2 = 1”7 use RL-tree automata for Lg,...,L,, to construct a Biichi tree—
automaton for L (exercise). .
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Proof of Prop 7.10: Let A = (Q, X, I, A, F') be a Biichi tree—automaton for
L. Let the tree languages L, be defined as above. We successively eliminate
states that cannot occur in a successful run.

1. The automaton A; = (Q1,%, I, %4, F}) is obtained from A by elim-
inating those states ¢ € @ with L, = (. Since A, is an automaton
on finite trees, L, = L(A,) = 0 is decidable (Prop 6.22). To be more
precise:

Q= Q\{4eQ|L, =0}

L = 1IN

F1 = FﬂQl

A, 0 Q1 =299 g5 Ay(g) NQ x Q,

Why does L, = () imply that ¢ cannot occur on a successful run? If ¢

is a successful run and ((u) = ¢, then t, € L,, and thus L, = (). This
shows that L, (A1) = L, (A).

2. By iterating this, we obtain a sequence Ay, Ay, ... of
Biichi tree-automata with L, (A;) = L,(A). Since @ is finite, this
sequence becomes stable after a finite number of steps, i.e. one reaches
an automaton A,, such that

L,(A)=L,(A,) and L, # 0 for all ¢ € Q,, (note: Q,, = 0 is possible).

3. We claim: L,(A,) # 0 iff T,, # 0.
Proof of the claim: We know from Prop 7.11:

Lw(An>=<U L,»> Uedn) (Ly L Ly, Yo Uiendn),

Obviously, I, = @ implies that this expression is empty. If I, # 0,
then (U, ¢ ; Li # 0 since L; # 0 for all i € I,. I,, # () also implies that
F,, # 0 (since for F,, = ) all the sets L, are empty). Thus, there are

trees to € U; o, List1 € Lyyy oot € Ly, for Fyy = {f1,..., fu} # 0.
But then the tree

belongs to L, (A). .
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Example: automaton from Example 7.5:

% e {a(f,0)} -9 ({a(f, D)}, {b(O,O)})= D)
@ @ (o) (b)
RahRhERE
/\/ / /\/ / / /‘

Proposition 7.12 The emptiness problem for Rabin-recognizable w-tree
languages is decidable.

Proof: Let A= (Q,%,I,A,Q) be a Rabin-tree automaton. A state ¢ € @ is
called activeiff it can be reached from some state and does not only reproduce
itself. To be more precise: ¢ € () is active if there exist a,b € ¥ and states

70,1, q2, ¢ € @Q such that

e (q,4") € Ap(qo) or (¢',q) € Ap(qo) (reachable)

e (q1,02) € Au(q) where {q1,q2} # {¢} (does not reproduce itself)

Otherwise, ¢ is passive. Passive states allow only transitions of the form
Ay(q) ={(g,q)} or they can only occur at the root of a successful run. Note
that it is obviously decidable whether a given state is active or not. We show
decidability of the emptiness problem by induction on the number of active
states in A.

Induction base: no active states

A successful run then has the following o 2

form: QI%CII 720~ G2
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This means that there are states 7, ¢;, g2 € () such that

e there are a,b,c € ¥ with

— (q1,q2) € Ag(7)
— (1, q1) € Do(qr)
— (@2, ¢2) € Ac(q2)
e 1c/
e there are (F,G),(F',G') € Q with ¢ € F and ¢1 ¢ G, ¢ € F’
and ¢ ¢ G'.

Obviously it is decidable whether such a triple 7, ¢y, ¢» exists.

Induction step: n > 0 active states
For a successful run ¢ : {0,1}* — @ there are three possibilities.
Case 1: one of the active states does not occur in ¢

Then ¢ is also a successful run of the automaton Aq_ obtained from A
by deleting g.

A, =(Q .2, InQ, A", Q) where

Q = Q\{¢}
Al Q=299 L A =Ap) N (Q X Q)
Q= {(FG) ]

there is (F,G) € Q such that F' = FN Q" and G' =GNQ'}

It can be decided whether this case holds for some successful run by
considering for every state ¢ the automaton A, and then deciding the
emptiness problem for A (by induction this is decidable since A" has
less active states).

Case 2: In ¢ there is a node u such that ¢(u) = ¢ and ¢ is active and
the subtree ¢, does not contain the active state ¢’ (except possibly at
the root if ¢ = ¢').

Let Zq be the “tree” obtained from ¢ by pruning all branches immedi-
ately below the first occurrence of ¢ in each path. (Note: ¢, may have
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both finite and infinite paths). Then Zq 4 ¢, is still a successful run!
How can we test whether such runs ¢, and ¢, exist?

1. Existence of Zq @
¢, is modified to ¢, by replacing the @ @
leafs labelled with ¢ by the tree: @ @ @ @

An automaton that has €~q as successful run can be obtained as
follows:
A, =(Q, 5,1, A", Q) where

o AL(q) ={(¢g.q)} and Al (p) = A,(p) for all p # ¢
o ' =0U{({q},0)}
We have L, (A,) # 0 iff there exists a run ¢,. Obviously A, has

one active state less than A, and thus L, (A,) # 0 is decidable by
induction.

2. (, is a successful run of the automaton Aq, ¢+ Which is obtained
from A by removing ¢’ from A. To be more precise:

A, = (@Q,5,{q}, A, Q) where
Al(p) = Au(p) N (Q x Q') for all a € T,p € Q where
Q'=Q\{¢}
Again, A, has one active state less than A since ¢’ is no longer
active.

By induction, we can test for all pairs (q,¢’) of active states, whether
A, and A; ¢ accept non-empty languages. If this is the case, then A
has a successful run satisfying Case 2.

Case 3: There is at least one active state and below every active state in ¢
every other active state occurs.

Thus, there is a path 7 in ¢ such that every active state occurs infinitely
often on 7. Except at the beginning of 7, no passive states can occur
on 7. There must be a pair (Fy,Go) € Q that accepts m. Thus, Fj
contains at least one active state and none of the active states occurs
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in Gy (i.e. Gy contains only passive states). Let ¢ € Fy be an active
state.

The “tree” Zq is defined as in Case 2. Let u € {0,1}* be such that
((u) = q. The tree (,, is obtained from ¢, by pruning below every
occurrence of ¢ that is not at the root.

Example:

Obviously, Zq 4 Zu,q‘”’q is a run of A. Why is it successful? Let 7w be a
path in this run.

Case a: 7 is an infinite path in Zq or an infinite final segment of =
belongs to ¢, ,. Then this path is accepted by some pair in Q
since an infinite final segment of it also occurs in a path in /.

Case b: Otherwise, ¢ occurs infinitely often in 7. In addition, a pas-
sive state can only occur at the beginning of w. Thus, (Fy, Gy)
accepts .

Existence of Zq can be tested as shown in Case 2.

Existence of Zu,q: Since ¢ in Zu,q has two different functions (at the root
and the leafs), we rename ¢ at the root to a new state ¢q. ¢ i, is obtained

from Zu,q by labelling the root with ¢y. As in the second case, we modify
(%, to (%, The automaton Apa= QU {0}, {q}, A, Q) with

® do ¢ Q
* Al(q) == Aulq)
A lg) = {(g,0)}
AL(q) = Aulq) for ¢ ¢ {q,q}
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o ' =0U{({q},0)}

has ¢° as a successful run. It has one active state less than A since
q, qo are passive.

To sum up:

For a Rabin—tree automaton A we have L, (A) = ) iff the following holds:

e If A does not contain active states, then there does not exists a triple
i,q1,q2 € Q such that

— 1€ [ and

— thereisa,b,c € X with (g1,¢2) € Au(i), (q1,01) € Dp(q1), (92, ¢2) €
Ac(ga)

— there exist (F,G), (F',G") € Q such that ¢ € F and ¢; ¢ G,
q2 € Flv q2 §é GI

e If A contains at least one active state, then for all active states ¢:

— L(A;) =0

— L(Ay) =0 or L(A_,) =0 for all active states ¢, and

— if there is a pair (Fp, Go) € Q with ¢ € Fy and Gy contains only
passive states, then L(A,) =0 or L(A ) = 0. -
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Tree—automata and logical
formulae

8.1 S28S logic

We extend S1S to a logic with 2 successor functions. Instead of the interpre-
tation domain IN (w) we use the infinite binary tree.

Definition 8.1

1. Formulae of the logic S2S are built like formulae of S1S, with the only
difference that

e the successor function s is replaced by two successor functions sg
and s;.

e The constant 0 is replaced by the constant ¢.

2. As interpretation domain we take the set {0,1}* (the domain of infinite
binary trees), where

e c is interpreted as ¢ (the root)

e s),8; are interpreted as sg : u — u0, 81 @ u — ul
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e < is interpreted as the prefix order on {0,1}* i.e. u < v iff Jw €
{0,1}". ww =w

e P, ..., P, are interpreted as subsets of {0,1}*

S2S—formulae can be used to define w—tree languages. As in the case of S1S
we use the alphabet ¥ = {0,1}". Every element of ¥ has arity 2. An S2S
interpretation I can be viewed as an w-tree t; with labels from X:

1 ue P!

ty(u) := (by, ..., by) where b; = { 0 ug¢ Pl

Definition 8.2 Let ¢ be a closed S2S—formula. Then,

Lo(p) ={t1 €T5 | I F ¢}
Some examples of S2S—formulae:

e Chain(X) : describes subsets X of {0,1}* such that all elements are
prefix—comparable.

Chain(X) : Va.Vy. (X () A X(y) =z <yVe=yVy<z)
e Path(X) : paths are maximal chains (no holes)
XCY Vo X(z)=Y(x)
X=Y:VeX(z) e Y(r)
Path(X) : Chain(X) AVY.(X C Y A Chain(Y) = X = Y)
InfiniteChain (X)

InfiniteChain(X) : Chain(X) A Va. (X (x) = Jy. (2 <y A X(y)))

Z = PrefixClosure(X)
Vz(Z(2) & Ju. (X (2) A (2 < 2)))

Finite(X)
Finite(X) : VZ.(Z = prefixClosure(X) = —3Y.(Y C ZAInfiniteChain(Y')))
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Why does this express finiteness of X 7
— If X is infinite, then so is its prefix closure Z. Thus Z can be

viewed as infinite tree. By Konig’s lemma it contains an infinite
path Y.

— If X is finite, then its prefix closure is finite, and thus cannot
contain an infinite chain.

Example 8.3 n=1,ie. X =1{0,1}.

1. Ly = {t € T¢ | there is a path in ¢ containing infinitely many 1’s}
(see Example 7.5)

1 = Y. Path(Y) AVa. (Y(z) = Jy.(Y(y) Az <y A Pi(y)))

Ly = L,(—¢1)

Proposition 8.4 (Rabin) For an w—tree language L C T the following are
equivalent

1. L is Rabin-recognizable.

2. L= L,(p) for a closed S2S—formula ¢.

Proof: very similar to the proof of Prop. 5.4.

“1=2” Let A = (Q,%,1,A,Q2) be a Rabin-tree automaton with @ =
{q1,.-- ... .qm }. For every ¢; we introduce a second-order variable Y
with the intended interpretation:

x belongs to Yj if the run labels z by ¢;.
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The existence of a successful run can be expressed as follows:

dY;...3Y,,.

(VE@A

Va. \=(¥i(2) AV (@)A
i£]
Ve \/ Vi@ AQu(e) A Vilso(a)) A Y (s ()

(2;.95)€0a(qg)
a€X

VZ. Path(Z) =

\/ (V Ve (Z(2) = 3u.(Z(y) Az <y AYily)A

(F,G)eQr qieF

/\ e Vy. (Z(y) Ne <y = _'Yz(y)))>

¢ €G

“2 = 1” As in the case of S1S we reduce S25-formulae to S2S,—formulae.
Then the proof is by induction on the structure of S2Sy—formulae. For
the induction step one uses closure under Boolean operations and al-
phabet renaming for Rabin-recognizable languages. .

Corollary 8.5 Validity in S2S is decidable.

Instead of binary trees one can also consider k—ary trees (k > 1). The results
for & = 2 can easily be generalized to arbitrary k. In particular, SES (k
successor functions) is decidable.
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