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Motivation and Context

In automata theory and formal languages one is interested in lasses of lan-

guages und their properties. A formal language is a set L � �

�

, i.e. a set

of words over a given alphabet �. � is usually �nite. A lass of formal

languages K assigns with eah �nite alphabet � a set K

�

� 2

�

�

, i.e. a set of

languages over �.

Given a lass K, one is interested in the following questions:

Charaterization How an we haraterize the languages belonging to the

lass?

We are looking for properties P suh that:

L 2 K

�

i� L � �

�

and L satis�es P:

Usually one wants to have di�erent equivalent haraterizations (au-

tomata, grammars, . . . ). Some haraterizations are better for ertain

purposes then other haraterizations.

Closure properties Under whih operations on languages (intersetion,

union, omplement, homomorphi images, . . . ) is the lass losed?

Deidability Whih problems are deidable for this lass?

e.g.: w 2 L? L 6= ;? L

1

� L

2

?

One assumes that the (usually in�nite) languages are given by a �nite

representation orresponding to one of the haraterizations.
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MOTIVATION AND CONTEXT

The most important lasses are olleted in the Chomsky hierarhy:

Class Charaterization

Type 0

� generated by general Chomsky grammars (transitions u!

v where u ontains a non{terminal)

� aepted by Turing mahines

Type 1

ontext

sensitive

� generated by ontext sensitive grammars (transitions u! v

where 1 � juj � jvj)

� aepted by Turing mahines with a linearly bounded tape

Type 2

ontext

free

� generated by ontext free grammars (transitions X ! v

where X is non{terminal)

� aepted by push{down automata

Type 3

regular

� generated by right linear grammars (transitions X ! uY ,

X ! u where X; Y are non{terminal and u is a terminal

word)

� aepted by a �nite automata

Examples of further haraterization

Do deterministi mahines (automata) yield the same lass as non determin-

isti ones?

Type 0 Yes

Type 1 Open

Type 2 No

Type 3 Yes

Examples of losure properties

Is the lass losed under omplementation, i.e. L 2 K

�

; �

�

n L 2 K

�

?
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MOTIVATION AND CONTEXT

Type 0 No (omplements of reursively enumerable languages

need not to be reursively enumerable)

Type 1 Yes (relatively new result, 1987).

Type 2 No (related to determinism)

Type 3 Yes

Examples of deision problems

Are the word problem and the equivalene problem deidable?

Class w 2 L ? L

1

= L

2

?

Type 0 undeidable undeidable

Type 1 deidable undeidable

Type 2 deidable undeidable

Type 3 deidable deidable

The leture will mostly onentrate on Type 3 languages. We will look at

sublasses, di�erent haraterizations and generalizations to in�nite words

and trees. The sript is organized in three parts:

1. Regular languages of �nite words

As alternative haraterizations we will onsider:

� Algebrai haraterizations

{ Every language an be assoiated with a monoid (syntati monoid).

{ Regular languages are those whose syntati monoid is �nite.

� Logial haraterizations

{ Logial formulae an de�ne languages.

{ There is a logi (monadi seond{order logi) that de�nes the

regular languages.

These haraterizations an be used to de�ne sublasses of the lass of regular

languages. The most prominent one is the lass of star{free languages:

Marh 3, 2005 3



MOTIVATION AND CONTEXT

� They are de�ned by formulae of �rst{order prediate logi.

� Their syntati monoid is aperiodi.

2. Languages of in�nite words

Instead of �nite words (�nite sequenes of letters) one an onsider in�nite

words (in�nite sequenes of letters) as input for �nite automata. The only

thing that must be hanged is the aeptane ondition.

� Finite words: after reading the word a �nal state is reahed

� In�nite words: onditions on the states that are reahed in�nitely often

We will show losure properties, deidability of the emptiness problem and we

will look at the onnetion to logi. One an obtain interesting deidability

results for logis.

3. Tree languages (or forrests)

Words an be viewed as labeled trees with branhing fator � 1.

abaa b=

a

a

b

a

The notion of a �nite automaton an be extended to the one of a tree au-

tomaton by allowing for branhing > 1. Many results for regular languages

generalize to tree languages. There is again an interesting onnetion to

logis.
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MOTIVATION AND CONTEXT

The main emphasis will be on appliations in logi (deidability results).

Methods are as important as the results! There will be an emphasis on

proofs!
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Chapter 1

Regular languages, �nite

monoids and logial formulae

Goal of this hapter is to reapitulate some de�nitions and results for regular

languages and establish a relationship to monoids and formulae.

1.1 Regular languages and �nite automata

De�nition 1.1 Let � be a �nite alphabet. The lass Reg

�

of regular lan-

guages over � is the smallest lass suh that

� ;, f�g and fag for a 2 � are in Reg

�

(where � is the empty word),

� if L; L

1

; L

2

2 Reg

�

, then so are L

1

[L

2

, L

1

�L

2

= fu�v j u 2 L

1

and v 2

L

2

g, L

�

= fu

1

� � �u

n

j n � 0 and u

i

2 Lg.

As usual, we will write regular expressions to desribe regular languages.

E.g.: (ab)

�

a desribes (fag � fbg)

�

� fag, i.e. words over fa; bg starting and

ending with a, and where in between a

0

s and b

0

s alternate.

Beause of the de�nition, regular languages are losed under union, onate-

nation, and Kleene star. To show losure under intersetion and omplement,

an alternative haraterization by �nite automata is more appropriate.
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1.1. REGULAR LANGUAGES AND FINITE AUTOMATA

De�nition 1.2 A non{deterministi �nite automaton A = (Q; �; I; �; F )

onsists of

� a �nite set of states Q,

� a �nite alphabet �,

� a set of initial states I � Q,

� a transition relation � � Q� ��Q,

� a set of �nal states F � Q.

As usual, we will draw graphs to represent automata.

e.g.:

-

1

-

a

�

b

2

Q = f1; 2g, � = fa; bg, I = f1g (shown by

-

1

)

� = f(1; a; 2); (2; b; 1)g, F = f2g (shown by

2

)

A path in the automaton is a sequene q

0

a

1

q

1

a

2

: : : a

n

q

n

where (q

i�1

; a

i

; q

i

) 2

� for 1 � i � n. We will often abbreviate suh a path as q

0

a

1

:::a

n

���!

A

q

n

. The

path is suessful if q

0

2 I and q

n

2 F .

The automaton A aepts the following language:

L(A) = fw 2 �

�

j q

o

w

�!

A

q

n

is a suessful path in Ag:

A language L � �

�

is alled reognizable, if there exists a �nite automaton

A that aepts L.

Kleene's theorem says that a language L � �

�

is reognizable i� it is regular.

We will use this to show that the lass of regular languages is losed under

intersetion.

Proposition 1.3 If L

1

; L

2

2 Reg

�

, then so is L

1

\ L

2

.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Proof: Let A

1

= (Q

1

;�; I

1

;�

1

; F

1

) and A

2

= (Q

2

;�; I

2

;�

2

; F

2

) be au-

tomata suh that L

1

= L(A

1

) and L

2

= L(A

2

). We de�ne A := (Q

1

�

Q

2

;�; I

1

� I

2

;�; F

1

� F

2

) where

� := f((q

1

; q

2

); a; (q

0

1

; q

0

2

)) j (q

1

; a; q

0

1

) 2 �

1

and (q

2

; a; q

0

2

) 2 �

2

g:

It is easy to see that

(q

1

; q

2

)

w

�!

A

(q

0

1

; q

0

2

) i� q

1

w

�!

A

1

q

0

1

and q

2

w

�!

A

2

q

0

2

:

Together with de�nition of initial and �nal states in A this implies w 2 L(A)

i� w 2 L(A

1

) \ L(A

2

).

To show the losure under omplement, non deterministi automata are not

appropriate.

Note: If A = (Q;�; I;�; F ) is non{deterministi, then the automaton A :=

(Q;�; I;�; Q n F ) need not satisfy L(A) = �

�

n L(A).

E.g.: A :=

-

1

a

-

a

2

Q = f1; 2g, � = fag, I = f1g

� = f(1; a; 1); (1; a; 2)g, F = f1g

L(A) = a

�

, L(A) = a

+

, but a

�

n L(A) = ;

This onstrution works if the automaton is deterministi.

De�nition 1.4 The automaton A = (Q;�; I;�; F ) is alled deterministi

i�:

� jIj = 1, i.e. I = fq

0

g,

� � is funtional, i.e. for every q 2 Q and every a 2 � there is exatly

one q

0

2 Q suh that (q; a; q

0

) 2 �.
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1.1. REGULAR LANGUAGES AND FINITE AUTOMATA

Instead of the transition relation � we will often use the transition funtion.

Æ : Q� � ! Q

(q; a) 7! q

0

i� (q; a; q

0

) 2 �:

The funtion Æ an be extended to words by de�ning Æ(q; w) := q

0

, where q

0

is

the unique state suh that q

w

�!

A

q

0

. We have L(A) = fw 2 �

�

j Æ(q

0

; w) 2

Fg.

The power set onstrution an be used to onstrut a deterministi automa-

ton P (A) from a given non{deterministi automaton A = (Q;�; I;�; F ).

We de�ne P (A) := (2

Q

;�; q

o

; Æ

0

; F

0

) where:

� q

0

:= I;

� Æ

0

(P; a) := fq 2 Q j 9p 2 P with (p; a; q) 2 �g;

� F

0

:= fP � Q j P \ F 6= ;g:

It is easy to see that L(A) = L(P (A)) and that P (A) is deterministi.

Proposition 1.5 If L 2 Reg

�

, then L = �

�

n L 2 Reg

�

.

Proof: For L there exists a deterministi automaton A = (Q;�; q

0

; Æ; F )

with L = L(A). Thus w 2 L i� Æ(q

0

; w) 2 F . This is equivalent to saying

that w 2 L i� Æ(q

0

; w) 2 QnF . Consequently A = (Q;�; q

0

; Æ; QnF ) aepts

L.

Minimization of deterministi automata:

For every regular language there is a unique (up renaming of states) minimal

deterministi automaton aepting this language.

Given a deterministi automaton A = (Q;�; q

0

; Æ; F ), one an minimize it as

follows:

1. Remove unreahable states, i.e. states q 2 Q suh that there is no

w 2 �

�

with Æ(q

o

; w) = q.

Marh 3, 2005 9



CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

2. Identify equivalent states.

For q 2 Q let A

q

:= (Q;�; q; Æ; F ).

We de�ne:

q �

A

q

0

i� L(A

q

) = L(A

q

0

):

The relation �

A

is an equivalene relation. Now identify equivalent

states. This yields the unique minimal automaton.

Alternatively, the minimal automaton an be obtained using the Nerode right

ongruene. For a language L � �

�

we de�ne

u�

L

v i� 8w 2 �

�

: (uw 2 L i� vw 2 L):

This relation is an equivalene relation, whih additionally satis�es:

u�

L

v ; uw�

L

vw (right ongruene).

Nerode's theorem says that a language L is regular i� �

L

has a �nite index,

i.e. it has �nitely many equivalene lasses.

We an view these lasses as states of an automaton:

for u 2 �

�

, [u℄ := fv j u�

L

vg denotes the �

L

equivalene lass of u.

We de�ne A

L

= (Q;�; q

0

; Æ; F ) where

� Q := f[u℄ j u 2 �

�

g (�nite if L is regular),

� q

0

:= [�℄,

� Æ([u℄; a) := [ua℄ (independene of representatives!),

� F := f[u℄ j u 2 Lg (independene of representatives!).

For a regular language L, A

L

is the minimal deterministi automaton for L.
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

1.2 Regular languages and �nite monoids

A monoid (M; �

M

; 1

M

) onsists of a non empty set M , an assoiative binary

operation �

M

and a unit element 1

M

2M , i.e. the following must be satis�ed:

8x; y; z 2M : (x �

M

y) �

M

z = x �

M

(y �

M

z) (assoiative);

8x 2M : 1

M

�

M

x = x �

M

1

M

= x (unit element):

We will often write justM instead of (M; �

M

; 1

M

) and we will often omit the

index M . A monoid (M; �

M

; 1

M

) is �nite i� M is �nite.

Let M;N be monoids. The mapping � :M ! N is a homomorphism i�:

� �(x �

M

y) = �(x) �

N

�(y),

� �(1

M

) = 1

N

.

Example 1.6 For an alphabet �, the set �

�

together with onatenation as

binary operation and the empty word � as unit element is a monoid.

�

�

is alled the free monoid over � sine it satis�es the following universal

property:

For any monoid M and any mapping f : �!M , this mapping an uniquely

be extended to a homomorphism � : �

�

!M with �j

�

= f .

In fat: �(�) := 1

M

and �(a

1

: : : a

n

) := �(a

1

) �

M

: : : �

M

�(a

n

)

This means: homomorphisms from �

�

! M an be de�ned by mappings

f : �!M

Homomorphisms from �

�

into a monoid M an be used to de�ne languages

(i.e. subsets of �

�

).

De�nition 1.7 Let M be a monoid, � an alphabet and � : �

�

! M a

homomorphism. Every subset N of M de�nes a subset of �

�

:

�

�1

(N) := fw 2 �

�

j �(w) 2 Ng

The language L � �

�

is aepted by M i� there is N � M and a homomor-

phism � : �

�

!M suh that L = �

�1

(N).
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Proposition 1.8 Let L � �

�

. Then the following are equivalent:

1. L is aepted by a emphasize monoid.

2. L is regular.

Proof:

\1 ; 2" The monoid itself an be viewed as a �nite automaton.

Let � : �

�

! M be a homomorphism and L = �

�1

(N) for N � M

whereM is a �nite monoid. The deterministi �nite automaton A

M

:=

(M;�; 1; Æ; N) with transition funtion Æ(m; �) := m � �(�) aepts L.

First, one shows:

For all w 2 �

�

and all m 2 M we have Æ(m;w) = m � �(w)

(indution over jwj).

Consequently, Æ(1; w) = 1 � �(w) = �(w).

w 2 L = �

�1

(N) i� �(w) 2 N

i� Æ(1; w) 2 N

i� w 2 L(A

M

):

\2 ; 1": Let A = (Q;�; q

0

; Æ; F ) be a deterministi automaton with L =

L(A). Every word w 2 �

�

de�nes a funtion Æ

w

: Q! Q : q 7! Æ(q; w).

Let M = Q

Q

be the set of funtion from Q to Q. Sine Q is �nite, M

is also �nite. With omposition of funtions as binary operation and

the identity funtion as unit element, M is a monoid.

Notation: (Æ

1

Æ Æ

2

)(q) := Æ

2

(Æ

1

(q)) (order!)

It is easy to see that � : �

�

!M : w 7! Æ

w

is a homomorphism.

How must N �M be de�ned?

Condition: L(A) = �

�1

(N)

w 2 L(A) i� �(w) 2 N

+ +

Æ(q

0

; w) = Æ

w

(q

0

) 2 F i� Æ

w

2 N

Thus, if we de�ne N := fÆ

w

j w 2 �

�

and Æ

w

(q

0

) 2 Fg, then �

�1

(N) =

L(A) = L

12 Marh 3, 2005



1.2. REGULAR LANGUAGES AND FINITE MONOIDS

The image of �

�

under � is alled the transition monoid of A:

De�nition 1.9 If A = (Q;�; q

0

; Æ; F ) is a deterministi �nite automaton,

then its transition monoid is the submonoid M

A

:= fÆ

w

j w 2 �

�

g of M =

Q

Q

.

The transition monoid of the minimal automaton is of partiular interest.

De�nition 1.10 For a regular language L, the transition monoid of the

minimal automaton is alled the syntati monoid of L. We denote this

monoid as M

L

.

Sine the minimal automaton is uniquely de�ned by L, M

L

only depends

on L. We an also de�ne M

L

diretly from L (without the detour through

automata).

De�nition 1.11 For an arbitrary language L � �

�

, its syntati ongruene

�

L

on �

�

is de�ned as follows:

8u; v 2 �

�

: u �

L

v i� 8x; y 2 �

�

: xuy 2 L i� xvy 2 L:

It is easy to show that �

L

is a ongruene, i.e. it is an equivalene relation

that also satis�es:

8u; v; x 2 �

�

: (u �

L

v ; (ux �

L

vx and xu �

L

xv)) :

Thus, we an onstrut the quotient monoid �

�

=

�

L

:

� domain f[w℄

�

L

j w 2 �

�

g where [w℄

�

L

:= fw

0

j w �

L

w

0

g

� operation [u℄

�

L

� [v℄

�

L

:= [uv℄

�

L

(independene of representatives sine

�

L

is a ongruene)

� unit element [�℄

�

L

.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Proposition 1.12 Let L � �

�

be regular. Then �

�

=

�

L

is isomorphi to the

syntati monoid M

L

.

Proof: Let A = (Q;�; q

0

; Æ; F ) be the minimal automaton for L.

We de�ne:

 : �

�

=

�

L

! M

L

[u℄

�

L

7! Æ

u

1. This de�nition is independent of the hosen representative,

i.e. u �

L

v ! Æ

u

= Æ

v

.

Assume that u �

L

v, but Æ

u

6= Æ

v

. Thus there is a q 2 Q suh that

Æ

u

(q) = Æ(q; u) = q

1

6= q

2

= Æ(q; v) = Æ

v

(q):

Sine A is minimal, q is reahable, i.e. there is an x 2 �

�

suh that

q = Æ(q

0

; x).

Sine u �

L

v, we know for all y 2 �

�

that

xuy 2 L i� xvy 2 L:

But then we know for all y 2 �

�

that

Æ(q

1

; y) = Æ(q

0

; xuy) 2 F i� Æ(q

0

; xvy) = Æ(q

2

; y) 2 F

This shows that L(A

q

1

) = L(A

q

2

).

Sine A is minimal, q

1

= q

2

.

2.  is injetive, i.e. Æ

u

= Æ

v

) [u℄

�

L

= [v℄

�

L

.

Assume that Æ

u

= Æ

v

and xuy 2 L. We must show xvy 2 L.

xuy 2 L) Æ(q

0

; xuy) 2 F . But this yields for q

1

:= Æ(q

0

; x):

Æ(q

0

; xuy) = Æ(q

1

; uy) = Æ

y

(Æ

u

(q

1

))

Æ

u

=Æ

v

= Æ

y

(Æ

v

(q

1

)) = Æ(q

1

; vy) = Æ(q

0

; xvy) 2 F ) xvy 2 L

3.  is surjetive:

Æ

u

is the image of [u℄

�

L

.
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4.  is a homomorphism:

 ([u℄

�

L

� [v℄

�

L

) =  ([uv℄

�

L

) = Æ

uv

= Æ

u

Æ Æ

v

=  ([u℄

�

L

) Æ  ([v℄

�

L

):

 ([�℄

�

L

) = Æ

�

:

Corollary 1.13 L is regular i� �

L

has �nite index.

Proof:

\)" If L is regular, then M

L

is the transition monoid of the minimal au-

tomaton for L. This monoid is obviously �nite.

We have just shown that M

L

' �

�

=

�

L

, and thus �

L

has only �nitely

many equivalene lasses.

\(" To show that L is regular, we show that L is aepted by the �nite

monoid �

�

=

�

L

.

We de�ne: � : �

�

! �

�

=

�

L

: u 7! [u℄

�

L

and N := f[u℄

�

L

j u 2 Lg

We must show the following: �

�1

(N) = L

\�" u 2 L) �(u) = [u℄

�

L

2 N ) u 2 �

�1

(N)

\�" u 2 �

�1

(N)) �(u) = [u℄

�

L

2 N ) u 2 L

Note: The de�nition of N is again independent of the hosen representative

sine (�) u 2 L and u �

L

v ) v 2 L.
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Example 1.14 Let L = f�; �g

�

��f�; �g

�

.

The following is a non{deterministi �nite automaton for L:

1 2 3

�; �

� �

�; �

Power set onstrution only generating reahable states:

�

�

�

�

�

�

�

�

f1g

f1; 2g

f1; 3g

f1; 2; 3g

Thus, we now want to minimize the automaton:

�

� �

�

�

�

�

q

0

q

1

�

q

2

q

3

Identify equivalent states:

q �

A

q

0

i� L(A

q

) = L(A

q

0

)

To ompute �

A

we ompute the following relations �

n

(n � 0).

q �

0

q

0

i� (q 2 F and q

0

2 F ) or (q 62 F and q

0

62 F );

q �

n+1

q

0

i� q �

n

q

0

and 8a 2 � : Æ(q; a) �

n

Æ(q

0

; a):
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

�

n

are equivalene relations suh that Q�Q � �

0

� �

1

� : : :

Sine Q is �nite, there is a k suh that �

k

= �

k+1

. One an show that then

�

k

= �

A

.

In the example:

� �

0

: has the lasses F = fq

2

; q

3

g and F = fq

0

; q

1

g

� �

1

: fq

0

g; fq

1

g; fq

2

; q

3

g

� �

2

=�

1

=�

A

Thus, the minimal automaton looks as follows:

p

2

p

0

p

1

�

�

�

�

�; �

The syntati monoid of L is the transition monoid of this automaton

Æ

�

=

p

0

p

1

p

2

p

0

p

1

p

2

; Æ

�

=

p

0

p

1

p

2

p

1

p

1

p

2

= Æ

��

; Æ

�

=

p

0

p

1

p

2

p

0

p

2

p

2

= Æ

��

;

Æ

��

=

p

0

p

1

p

2

p

2

p

2

p

2

= Æ

��u

for all u 2 �

�

Æ

��

=

p

0

p

1

p

2

p

1

p

2

p

2

= Æ

���

6= Æ

���

= Æ

��

:

Consequently M

A

= fÆ

�

; Æ

�

; Æ

�

; Æ

��

; Æ

��

g. The multipliation table an be

obtained from the observed identities.

Example 1.15 Not every �nite monoid an be obtained as syntati monoid

of a regular language.

M = f1; a; b; g
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� 1 a b 

1 1 a b 

a a a b 

b b a b 

  a b 

a; b;  are right absorbing, i.e. 8x 2M :

x � a = a, x � b = b, x �  = .

Note: � is assoiative

We laim that M annot be the syntati monoid of some regular language:

Assume that L is a regular language and  :M ! �

�

=

�

L

is a isomorphism.

We know: u 2 L) [u℄

�

L

� L (see (�) in the proof of Corollary 1.13)

For m 2 fa; b; g we thus have:

 (m) � L or  (m) � L:

We have three elements and two possibilities for them to satisfy. Thus, two

of these elements must behave the same. We onsider the ase  (a) � L and

 (b) � L (all the other ases an be treated similarly).

Claim:  (a) =  (b) (this is a ontradition to  being a isomorphism)

Proof of the Claim: Assume that  (a) = [u℄

�

L

and  (b) = [v℄

�

L

. We

must show that u �

L

v. Consider x; y 2 �

�

. We must show that xuy 2

L i� xvy 2 L.

Case 1: [y℄

�

L

6= [�℄

�

L

, and thus  

�1

([y℄

�

L

) is right{absorbing

 

�1

([xuy℄

�

L

) =  

�1

([x℄

�

L

) 

�1

([u℄

�

L

) 

�1

([y℄

�

L

)

=  

�1

([y℄

�

L

)

=  

�1

([x℄

�

L

) 

�1

([v℄

�

L

) 

�1

([y℄

�

L

) =  

�1

([xvy℄

�

L

)

Thus [xuy℄

�

L

= [xvy℄

�

L

, i.e. xuy �

L

xvy ) xuy 2 L i� xvy 2 L.

Case 2: [y℄

�

L

= [�℄

�

L

and thus  

�1

([y℄

�

L

) = 1.

 

�1

([xuy℄

�

L

) =  

�1

([x℄

�

L

) 

�1

([u℄

�

L

)

=  

�1

([u℄

�

L

) = a

 

�1

([xvy℄

�

L

) =  

�1

([x℄

�

L

) 

�1

([v℄

�

L

)

=  

�1

([v℄

�

L

) = b:

We know  (a) � L and �(b) � L. Thus xuy 2 L and xvy 2 L.
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We will use the onnetion between �nite monoids and regular expressions

to de�ne sublasses of the lass of regular languages.

De�nition 1.16 Let V be a lass of �nite monoids. The orresponding lass

of languages L(V ) is de�ned as follows:

L(V )

�

= fL � �

�

jM

L

2 V g:

Note: Sine V ontains only �nite monoids, all languages in L(V )

�

are

regular.

To obtain \reasonable" lasses of languages, we must restrit the attention

to \reasonable" lasses of monoids. So alled M{varieties have turned out to

be reasonable in this ontext.

De�nition 1.17 A non{empty lass V of �nite monoids is alled M{variety

i� it is losed under building submonoids, (binary) diret produts and ho-

momorphi images.

Submonoid: N �M is a submonoid of (M; �; 1) i�

� 1 2 N

� n; n

0

2 N ) n � n

0

2 N

Closure under building submonoids means: M 2 V , N is a submonoid of

M ) N 2 V .

Diret produt: M

1

�M

2

with

� 1

M

1

�M

2

= (1

M

1

; 1

M

2

)

� (m

1

; m

2

) Æ (m

0

1

; m

0

2

) = (m

1

�m

0

1

; m

2

�m

0

2

)

Homomorphi images: if � : M

1

! M

2

is a surjetive homomorphism,

then M

2

is a homomorphi image of M

1

.
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Example 1.18 Let V

G

be the lass of all �nite groups. It is not hard to

show, that V

G

is an M{variety.

Note: Closure under building submonoids only holds sine we onsider �nite

groups. E.g. (Z;+; 0) is a group, and (N;+; 0) is a submonoid, but it is not

a group.

There is an alternative haraterization of M{varieties using equations.

Let X be a ountably in�nite alphabet (of variables). An equation is of

the form u = v where u; v 2 X

�

(instead of � we usually write 1 in suh

equations).

The monoid M satis�es the equation u = v i� �(u) = �(v) for all homomor-

phisms � : X

�

!M .

Example: assume that x; y 2 X

Then xy = yx is an equation, whih is satis�ed by all ommutative monoids:

ommutative: 8m;n 2M : m � n = n �m

Take the homomorphism � suh that �(x) = m and �(y) = n. If M satis�es

xy = yx, then m � n = �(x) � �(y) = �(xy) = �(yx) = �(y) � �(x) = n �m:

De�nition 1.19 Let (u

n

= v

n

)

n�1

be a sequene of equations.

1. M ultimately satis�es (u

n

= v

n

)

n�1

i� there is a k � 1 suh that M

satis�es (u

n

= v

n

) for all n � k.

2. The lass V of �nite monoids ultimately de�ned by (u

n

= v

n

)

n�1

onsists

of all the monoids that ultimately satisfy (u

n

= v

n

)

n�1

.

Theorem 1.20 [Eilenberg, Sh�utzenberger℄ For a lass V of �nite monoids,

the following are equivalent:

1. V is an M{variety.

2. V is ultimately de�ned by some sequene of equations.
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Example 1.18 (ontinuation) The M{variety of all �nite groups is ulti-

mately de�ned by (x

�n

= 1) where �n = lm(1; : : : ; n) (lm = least ommon

multiple).

Proof:

1. If G 2 V

G

then G satis�es x

�n

= 1 for all n � jGj.

Let k := jGj

Claim: For all g 2 G there is an l � k suh that g

l

= 1.

Consider g

0

= 1; g

1

= g; g

2

; g

3

; : : : ; g

k

.

Sine jGj = k, there are 0 � i � k and 1 � l � k suh that g

i

= g

i+l

.

Sine l � k, we know that l j �n for all n � k ) there is an r suh that

l � r = �n, and thus g

�n

= (g

l

)

r

= 1

r

= 1.

2. If a monoid M satis�es the equation x

�n

= 1, then M is a group: for

m 2M , we know that m

�n�1

is an inverse sine m�m

�n�1

= m

�n�1

�m =

m

�n

= 1.

The losure properties of M{varieties imply losure properties of the indued

lasses of languages. We will show losure under \;[ and

�

. But �rst, we

need one more lemma.

Lemma 1.21 Let V be an M{variety and L � �

�

a language that is aepted

by some M 2 V . Then M

L

2 V .

Proof: Sine M aepts L, there is a homomorphism � : �

�

!M and a set

N � M suh that L = �

�1

(N).

1. Without loss of generality, � an be assumed to be surjetive. Other-

wise, onsider M

0

= �(�

�

) and N

0

= M \ N instead of M;N . Sine

M

0

is a submonoid of M , we know M

0

2 V .

2. De�ne for u; v 2 �

�

: u �

�

v i� �(u) = �(v).

Then �

�

��

L

.
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Sine: Assume u �

�

v and xuy 2 L. We must show xvy 2 L.

�(xvy) = �(x)�(v)�(y)

= �(x)�(u)�(y) sine u �

�

v

= �(xuy) 2 N sine xuy 2 L = �

�1

(N)

) xvy 2 �

�1

(N) = L

3. We de�ne:

 :M ! �

�

=

�

L

m 7! [u℄

�

L

if �(u) = m:

�  is well{de�ned: if �(u) = m = �(v), then u �

�

v and thus

u �

L

v ) [u℄ = [v℄

In addition, for every m there is a u with �(u) = m sine � was

assumed to be surjetive.

�  is surjetive sine for every [u℄ we an take m := �(u), and then

 (m) = [u℄.

� Obviously  is a homomorphism

Thus, �

�

=

�

L

is a homomorphi image of M 2 V , and thus �

�

=

�

L

2 V

Proposition 1.22 Let V be an M{variety. Then L(V ) is losed under in-

tersetion, union and omplement.

Proof: It is enough to show losure under intersetion and omplement.

1. omplement: M

L

=M

�

�

nL

Sine: M

L

= �

�

=

�

L

and M

�

�

nL

= �

�

=

�

�

�

nL

However: �

L

=�

�

�

=

L

sine xuy 2 L i� xvy 2 L

is equivalent to: xuy 62 L i� xvy 62 L.
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2. intersetion: assume that �

�

=

�

L

2 V and �

�

=

�

L

0

2 V (i.e. L; L

0

2

L(V )

�

)

Consider the homomorphism

� : �

�

! �

�

=

�

L

: u 7! [u℄

�

L

�

0

: �

�

! �

�

=

�

L

0

: u 7! [u℄

�

L

0

We know (proof of Corollary 1.13) that, for N = �(L), N

0

= �

0

(L

0

), we

have L = �

�1

(N) and L

0

= �

0

�1

(N

0

).

We de�ne

 : �

�

! �

�

=

�

L

� �

�

=

�

L

0

2 V ! (losure under produt)

u 7! (�(u); �

0

(u))

This is a homomorphism and we have

 

�1

(N �N

0

) = fu 2 �

�

j �(u) 2 N and �

0

(u) 2 N

0

g

= �

�1

(N) \ �

0

�1

(N

0

)

= L \ L

0

This shows that L \ L

0

is aepted by �

�

=

�

L

� �

�

=

�

L

0

. Sine �

�

=

�

L

�

�

�

=

�

L

0

2 V , Lemma 1.21 implies that M

L\L

0

2 V and thus L \ L

0

2

L(V )

�

.

Sometimes it is more appropriate to look at semigroups instead of monoids:

Semigroup: has a binary assoiative operation (no unit element is required)

Most of the notions and results an be transferred from monoids to semi-

groups.

Syntati semigroup:

The syntati ongruene �

L

is also a ongruene on the free semigroup

�

+

= �

�

n f�g. For a language L � �

�

the syntati semigroup is �

+

=

�

L

.

Alternatively: The syntati semigroup is the transition semigroup fÆ

w

j w 2

�

+

g of the minimal automaton for L.

A S{Variety S is a lass of �nite semigroups that is losed under diret

produt, homomorphi images and building subsemigroups.
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Note: Even if 1 2 S, it need not to be in its subsemigroups.

S{varieties an also be ultimately de�ned by equations (Prop. 1.20 holds in

a semigroup variant 1.20s). The equations may not ontain 1.

Note: S{varieties sometimes yield a more �ne{grained division into lasses.

For example: the equation xy = y

Only trivial monoids (i.e. monoids of ardinality 1) satisfy this equation.

In fat, let m 2M : m = 1 �m = 1

Nontrivial semigroup satisfying xy = x:

� a b

a a a

b b b

� is assoiative

Corresponding lass of languages

If V is an S{variety, then L(V )

�

= fL � �

�

j S

L

2 V g

Lemma 1.21 and Prop. 1.22 also hold in semigroup variants 1.21s and 1.22s.

1.3 Regular languages and logial formulae

Whih logi? For the moment, �rst order prediate logi.

Syntax: extra logial symbols are

= , < , P

1

; : : : ; P

k

binary binary unary symbols

Semantis: we onsider �nite interpretations only (for the moment)

= is interpreted as equality,

< is a total ordering (linear ordering) on the domain

P

1

; : : : ; P

k

are interpreted as subsets of the domain.

Suh interpretations an be viewed as words over � = f0; 1g

k

Let I be an interpretation.
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� dom(I) = fd

1

; : : : ; d

n

g for some n � 1 where d

1

< d

2

< � � � < d

n

.

� P

j

is interpreted as a set P

I

j

� dom(I)

� Let �

i

= (b

i1

; : : : ; b

ik

) where

b

i

j

=

�

1 d

i

2 P

I

j

0 d

i

62 P

I

j

Then I orresponds to the word �

1

�

2

� � ��

n

. Conversely, every suh word

yields an interpretation.

Example 1.23 k = 2, i.e. � = f0; 1g

2

The word

�

1

0

� �

0

1

� �

1

0

�

over � orresponds to the interpretation

� dom(I) = fd

1

; d

2

; d

3

g

� d

1

< d

2

< d

3

� P

I

1

= fd

1

; d

3

g

� P

I

2

= fd

2

g

Instead of interpretations, we will use words. Thus it makes sense to say that

a word w 2 �

+

makes a formula ' true (w j= ').

De�nition 1.24 Let ' be a losed formula (no free variables) of �rst{order

prediate logi using the extra{logial symbols =; <; P

1

; : : : ; P

k

. Let � =

f0; 1g

k

. Then ' de�nes the language

L(') = fw 2 �

+

j w j= 'g:

Note: Sine interpretations must have non{empty domains, the empty word

does not desribe an interpretation, and L(') � �

+

. This is not a real

restrition. For example, L � �

�

is regular i� L n f�g is regular.
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Example 1.25 k = 1, i.e. � = f0; 1g. The language 1

�

10

�

is de�ned by the

following formula:

9x (P

1

(x) ^ 8y (y < x) P

1

(y)) ^ 8z (x < z ) :P

1

(z)))

Proposition 1.26 Boolean operations in formulae orrespond to Boolean

operations on languages:

L(:') = �

+

n L(');

L(' ^  ) = L(') \ L( );

L(' _  ) = L(') [ L( ):

In order to de�ne languages, we will introdue some useful abbreviations:

Q

�

(x) For every � 2 � we an onstrut a formula Q

�

(x) with one free

variable that says that � ours at position x.

e.g. k = 2; � =

8

<

:

0

�

0

0

1

A

;

0

�

0

1

1

A

;

0

�

1

0

1

A

;

0

�

1

1

1

A

9

=

;

Q

(1;1)

(x) := P

1

(x) ^ P

2

(x), Q

(1;0)

(x) := P

1

(x) ^ :P

2

(x)

Min(x) We an onstrut a formula Min(x) that says that x is the �rst

position of the word.

Min(x): :9y (y < x).

Max(x) Correspondingly we an express the last position by a formula

Max(x).

Max(x): 8y (y � x)

Su(x; y) y is the suessor position of x:

Su(x; y): x < y ^ :9z (x < z ^ z < y).

s(x) Sometimes it is more onvenient to use a funtion symbol to express

the suessor:

\s(x) = y" orresponds to Su(x; y) _ (Max(x) ^ x = y)
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min, max Correspondingly we will sometimes use onstants min, max for

the �rst and the last position

Pred(x; y) Just like suessor we an introdue predeessor as formula Pred(x; y)

or as funtion p.

Example 1.27 The regular language a(ba)

�

an be de�ned through

Q

a

(min)^

8x; y (Q

a

(x) ^ Su(x; y)) Q

b

(y))^

8x; y (Q

b

(x) ^ Su(x; y)) Q

a

(y)^

Q

a

(Max):

What kind of languages an be de�ned with formulae from �rst order pred-

iate logi (PL1)? We will see later on that only regular languages an be

de�ned this way. Can all regular languages be de�ned with PL1{formulae?

No!

Example 1.28 L = a(aa)

�

is regular, but it annot be de�ned using a PL1{

formula. We will see later on how this an be proved. (The onnetion to

monoids beomes important.)

How an we extend PL1 to get all regular languages?

One has to introdue:

Quanti�ation over unary prediates

� Variables for unary prediates: X; Y apital letters

� Variables for objets: x; y lower ase letters

The language a(aa)

�

is de�ned by the formula

9X9Y (X(min) ^

8x; y (X(x) ^ Su(x; y)) Y (y)) ^

8x; y (Y (x) ^ Su(x; y)) X(y)) ^

X(max) ^ 8x(X(x), :Y (x)) ^

8x Q

a

(x)):
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We will show that adding quanti�ation over unary prediates gives us ex-

atly the regular languages.

Chapter 3 will be onerned with the lass of languages de�ned by PL1{

formulae.

Chapter 2 is a warm{up exerise where we onsider a smaller lass of lan-

guages, whih an be de�ned using quanti�er{free PL1{formuale.
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Chapter 2

Generalized{de�nite languages

and quanti�er{free formulae

First we introdue the lass of languages diretly. Then we haraterize it

using semigroups and formulae.

2.1 Generalized{de�nite languages

Informally, these are languages suh that there is a k suh that only the �rst

and last k letters of eah word are relevant.

De�nition 2.1 The lass B

0

of all generalized{de�nite languages is de�ned

as follows: L � �

�

belongs to (B

0

)

�

i� there is a k � 0 suh that we have

for all w 2 L:

if w = uv = v

0

u

0

for juj = ju

0

j = k, then u�

�

\ �

�

u

0

� L.

Note that u�

�

\ �

�

u

0

onsists of the words starting with u and ending with

u

0

Whether a word belongs to L or not depends only on the last and �rst k

letters.
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Lemma 2.2 (B

0

)

�

is the Boolean losure of the languages:

fu�

�

j u 2 �

�

g [ f�

�

u

0

j u

0

2 �

�

g

Proof:

1. Let L 2 (B

0

)

�

and let k be the orresponding number from Def. 2.1.

(a) k = 0:

Thus L = ; or L = �

�

.

In the seond ase �

�

= ��

�

and in the �rst ; = u�

�

\ u�

�

for an

arbitrary u

(b) k > 0:

L =

[

juj=k=ju

0

j

u�

�

\�

�

u

0

�L

(u�

�

\ �

�

u

0

) [ fv 2 L j jvj < kg:

\�" is trivial.

\�" Let w 2 L. If jwj < k, then w 2 fv 2 L j jvj < kg. Assume

that jwj � k. Thus there exist words u; u

0

; v; v

0

suh that

juj = ju

0

j = k and w = uv = v

0

u

0

. By the de�nition of (B

0

)

�

,

w 2 L implies u�

�

\ �

�

u

0

� L. Thus, u�

�

\ �

�

u

0

is in the

union and obviously w 2 u�

�

\ �

�

u

0

It remains to show that fv 2 L j jvj < kg is in the Boolean losure.

It is enough to show that fvg is in the Boolean losure

fvg = v�

�

n v��

�

= v�

�

n (

[

�2�

v��

�

)

2. (a) We show L = w�

�

2 (B

0

)

�

. Take k = jwj.

Assume that w

0

2 L and that w

0

= uv = v

0

u

0

for juj = ju

0

j = k.

But then u = w and thus u�

�

\ �

�

u

0

� u�

�

= w�

�

= L

(b) The ase L = �

�

w an be treated analogously.

() losure under union:

L

1

2 (B

0

)

�

with number k

1

and L

2

2 (B

0

)

�

with number k

2

. We

hoose k = maxfk

1

; k

2

g. Note: u = u

1

u

2

) u

1

�

�

� u�

�

Using this fat, it is easy to show that k is the right number for

L

1

[ L

2

.
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(d) losure under omplement:

Let L 2 (B

0

)

�

and let k be the orresponding number. But then

k also works for L. Let w = uv = v

0

u

0

2 L where juj = ju

0

j = k.

We show u�

�

\ �

�

u

0

� L.

Assume, that there is a w

0

2 u�

�

\�

�

u

0

suh that w

0

2 L. But this

implies u�

�

\�

�

u

0

� L. But then w 2 L, whih is a ontradition.

2.2 The orresponding S{variety

To de�ne this S{variety we need the notion of an idempotent element.

De�nition 2.3 Let S be a semigroup. The element e 2 S is idempotent i�

e � e = e.

Unit elements are obviously idempotent, but there may be other idempotents

as well.

Proposition 2.4 Let S be a �nite semigroup and m 2 S. Then the set

fm;m

2

; m

3

; : : :g ontains an idempotent element.

Proof: Sine S is �nite, there are i; k � 1 suh that m

i

= m

i+k

:

m

-

m

2

-

� � �

-

m

i

j

m

i+1

-

m

i+2

6

� � �

�

m

i+k�1

�

Obviously there is an ` suh that

� ` � 0(k), i.e. 9`

0

:(` = k`

0

).

� i � ` < i + k, i.e. ` = i+ p for some p, 0 � p < k
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Claim: m

`

is idempotent

m

`

�m

`

k � `

0

= l;

i+ p = `

= m

i

�m

k�`

0

�m

p

m

i+k

=m

i

= m

i

�m

p

= m

`

:

Note: ifm

i

; m

i+1

; : : : ; m

i+k�1

are di�erent from eah other (i.e. k was hosen

minimal), then fm

i

; m

i+1

; : : : ; m

i+k�1

g is a yli group with unit elementm

`

.

For a given semigroup S we want a number �n suh that m

�n

is idempotent

for all m 2 S.

Corollary 2.5 Let S be a �nite semigroup and jSj � n. Then we have for

all m 2 S and n = lm(1; : : : ; n): m

n

is idempotent.

Proof: Obviously one obtains in the proof of Prop. 2.4 a k suh that i+k�

1 � n. Thus, ` � n and hene ` is a divisor of n, i.e. there is an `

0

suh that

n = ` � `

0

. It follows that m

n

= (m

`

)

`

0

= m

`

.

De�nition 2.6 The lass

b

ID onsists of all �nite semigroups S that satisfy

the following: for all idempotent e 2 S we have eSe = e.

(i.e. feme j m 2 Sg = feg)

(i.e. 8m 2 S : eme = e)

Proposition 2.7

b

ID is an S{variety, whih is ultimately de�ned by

(�)(x

n

yx

n

= x

n

)

n�1

:

Proof: it is enough to show that ID is ultimaltely de�ned by (�)

1. Let S 2

b

ID. By Corollar 2.5 we know that for n � jSj and m 2 S

we have m

n

is idempotent. By the de�nition of

b

ID it follows that

m

n

m

0

m

n

= m

n

for all m

0

2 S. Thus S satis�es (�) for all n � jSj.

2. Assume that S satis�es (�) for some n. Then we have for all idempo-

tents e and all m 2 S:

eme = e

n

me

n

= e

n

= e, and thus eSe = e
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Lemma 2.8 Let S 2

b

ID.

1. If n > jSj and m

1

; : : : ; m

n

2 S, then m

1

� � � � �m

n

is idempotent.

2. if e; f 2 S are idempotent and m 2 S, then emf = ef .

Proof:

1. Consider m

1

; m

1

m

2

; m

1

m

2

m

3

; : : : ; m

1

� � �m

n

. Sine n > jSj there are

i < j suh that m

1

� � �m

i

= m

1

� � �m

i

m

i+1

� � �m

j

. By Prop. 2.4 there

is an ` suh that (m

i+1

� � �m

j

)

`

is idempotent. But then

m

1

� � �m

n

= (m

1

� � �m

i

)(m

i+1

� � �m

j

)(m

j+1

� � �m

n

)

= (m

1

� � �m

i

)(m

i+1

� � �m

j

)

`

(m

j+1

� � �m

n

)

= (m

1

� � �m

i

) (m

i+1

� � �m

j

)

`

| {z }

e

(m

j+1

� � �m

n

)(m

1

� � �m

i

)

| {z }

2S

�

(m

i+1

� � �m

j

)

`

| {z }

e

(m

j+1

� � �m

n

)

= (m

1

� � �m

i

)(m

i+1

� � �m

j

)(m

j+1

� � �m

n

)

(m

1

� � �m

i

)(m

i+1

� � �m

j

)(m

j+1

� � �m

n

)

= (m

1

� � �m

n

)(m

1

� � �m

n

):

The seond identity holds sine m

1

: : : m

i

= m

1

: : :m

i

m

i+1

: : :m

j

.

2. e(mf)

eSe=e

= efe(mf) = e(femf)

fSf=f

= ef .

Proposition 2.9

L(

b

ID) = B

0

;

i.e. for every �nite alphabet � and every L � �

�

we have

S

L

2

b

ID, L 2 (B

0

)

�

:

Proof:
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\(" Let L 2 (B

0

)

�

, i.e. L is in the Boolean losure of the languages fu�

�

j

u 2 �

�

g [ f�

�

u

0

j u

0

2 �

�

g (Lemma 2.2). By Prop. 1.22s, L(

b

ID) is

losed under Boolean operations and thus it is suÆient to show that

u�

�

und �

�

u

0

belong to L(

b

ID). We onsider L = u�

�

(�

�

u

0

an be

treated symmetrially).

Let juj = n.

Case 1: n = 0

Thus u�

�

= �

�

: in this ase �

L

= �

�

��

�

, and thus S

L

= �

+

=

�

L

onsist of a single lass, whih is obviously idempotent. In addi-

tion, S

L

2

b

ID sine S

L

= feg and e � e � e = e.

Case 2: n > 0

Claim: If jwj � n, then wv �

L

w, for all v 2 �

�

.

Proof of the laim: for all x; y 2 �

�

we have

xwvy 2 L = u�

�

i� xwvy starts with u

i� xw starts with u

(sine jwj � n)

i� xwy starts with u

i� xwy 2 L = u�

�

.

Claim

Let e = [x℄

�

L

2 S

L

= �

+

=

�

L

be idempotent.

We must show eS

L

e = e.

Sine jxj � 1, we know that jx

n

j � n and thus w := x

n

satis�es

the preondition of the laim. Let m = [y℄

�

L

2 S

L

. Then we have

em = e

n

m = [x

n

℄

�

L

�[y℄

�

L

= [x

n

y℄

�

L

by the laim

= [x

n

℄

�

L

= e

n

= e:

In partiular, this implies eme = ee = e, whih shows S

L

2

b

ID.

\)" Let S

L

2

b

ID; n = jS

L

j+ 1. By Lemma 2.8 (1) we have for all words u

of length n that [u℄

�

L

is idempotent:

[u℄

�

L

= [�

1

: : : �

n

℄

�

L

= [�

1

℄

�

L

� � � � � [�

n

℄

�

L

:

Let x 2 L with jxj � 2n. Then x = uvu

0

for words u; v; u

0

with juj =

ju

0

j = n. We know that [u℄

�

L

; [u

0

℄

�

L

are idempotent. By Lemma 2.8
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(2) we have for all words w:

[uwu

0

℄

�

L

= [u℄

�

L

� [w℄

�

L

� [u

0

℄

�

L

= [u℄

�

L

� [u

0

℄

�

L

= [u℄

�

L

� [v℄

�

L

� [u

0

℄

�

L

= [uvu

0

℄

�

L

= [x℄

�

L

Thus, x 2 L implies that u�

�

u

0

� L.

To sum up, this shows the following: if juj = ju

0

j = n, then u�

�

u

0

� L

or u�

�

u

0

� L. Consequently,

L =

[

u�

�

u

0

�L

juj=ju

0

j=n

u�

�

u

0

[ fw 2 L j jwj < 2ng

| {z }

in(B

0

)

�

sine singleton fwg2(B

0

)

�

It remains to be shown that u�

�

u

0

2 (B

0

)

�

:

u�

�

u

0

= (u�

�

\ �

�

u

0

)

| {z }

2(B

0

)

�

n fw j jwj < 2ng

| {z }

2(B

0

)

�

2 (B

0

)

�

Corollary 2.10 Let L � �

�

be a regular language (given by a regular

expression or �nite automaton). Then we an e�etively deide whether

L 2 (B

0

)

�

or not.

Proof: Given L � �

�

, we ompute its syntati semigroup S

L

(by omputing

the minimal automaton and then its transition semigroup). For this �nite

semigroup we an obviously deide whether eme = e holds for all idempotents

e 2 S

L

and all elements m 2 S

L

.
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2.3 Quanti�er{free formulae

As extra{logial symbols we will use binary relations =, <, unary relations

P

1

; : : : ; P

k

, additionally onstants min, max, unary funtions s, p. The in-

terpretation of these symbols is �xed as desribed in Chapter 1.3.

Note: In Chapter 1.3 we have seen that min, max, s, p an be expressed

by formulae using only the other symbols. However these formulae need

quanti�ers. Sine we onsider quanti�er-free formulae here, we need these

symbols expliitly.

Proposition 2.11 Let � = f0; 1g

k

. For L � �

�

the following are equivalent:

1. L 2 (B

0

)

�

.

2. L n f�g = L(') for a quanti�er{free losed formula ' over the extra

logial symbols =, <, P

1

; : : : ; P

k

;min;max; s, and p.

Note: Sine f�g 2 (B

0

)

�

, we know that L 2 (B

0

)

�

i� L n f�g 2 (B

0

)

�

.

Proof:

\1! 2" Sine the Boolean operations on languages an be expressed using

the onnetions ^, _, : it is enough to onsider the languages u�

�

and �

�

u

0

.

We onsider only the ase L = u�

�

.

Formula expressing u�

�

:

Let u = �

1

� � ��

l

for some l � 1.

Q

�

1

(min) ^Q

�

2

(s(min)) ^Q

�

3

(s(s(Min))) ^ : : :

: : : ^Q

�

l

(s

l�1

(min))

^s

l�2

(min) < max (is left out if l = 1)

If u = �, then L = u�

�

= �

�

, and thus L n f�g = �

+

. Thus, we an take any

formula that is trivially true; for example, min = min.

\2 ! 1" Let ' be suh a losed quanti�er{free formula. Thus, ' does not

ontain variables. Terms are built using min;max; s; p (e.g.: s(p(s(min)))).
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These terms an be normalized into terms of the following form:

s

n

(min); p

n

(max) n � 0

To this purpose, we use the fat, that s(max) = max, p(min) = min,

s(p(d)) = d = p(s(d)) unless d is one of the extremal points min;max.

The formula ' is a Boolean ombination of atomi formulae

P

i

(t); t = t

0

; t < t

0

; where t; t

0

are normalized

Sine (B

0

)

�

is losed under Boolean operations, it is suÆient to show that

the atomi formulae de�ne languages in (B

0

)

�

� P

i

(s

n

(min)) is satis�ed by

{ words of lenghth < n + 1 satisfying some onditions

Finite sets of words belong to (B

0

)

�

{ words of length � n + 1 whose (n + 1)th symbol � 2 f0; 1g

k

has

as i{th omponent a 1:

[

juj = n

� 2 � with i{th omponent 1

u��

�

2 (B

0

)

�

� P

i

(p

n

(max)) an be treated similarly.

� formulae t = t

0

, t < t

0

are either true for all words (�

+

is in (B

0

)

�

) or

they restrit the length of the words:

{ s

n

(min) = s

m

(min) for n < m says that the word has length

� n+ 1. Finite sets of words belong to (B

0

)

�

.

{ s

n

(min) < s

m

(min) for n < m says that the word is of length

> n + 1. The omplement is a �nite set of words.

All other ases an be treated similarly!
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Chapter 3

Star{free languages

These are the languages de�nable by PL1{formulae.

3.1 The lass of languages

The lass of regular languages is the smallest lass that ontains all �nite

languages and that is losed under

� union (L

1

[ L

2

),

� onatenation (L

1

� L

2

) und

� star (L

�

)

Disallowing star here would leave us only with �nite languages. This ist a

small lass stritly ontained in (B

0

)

�

. We know that regular languages are

also losed under \ and

�

. We now disallow

�

, but expliitly allow \ and

�

.

De�nition 3.1 For a �nite alphabet �, the lass SF

�

of all star{free lan-

guages over � is the smallest lass that satis�es:

� all �nite languages over � belong to SF

�
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3.2. APERIODIC MONOIDS

� if L; L

1

; L

2

2 SF

�

, then so are L

1

� L

2

, L

1

[ L

2

L

1

\ L

2

, L = �

�

n L

Example 3.2

1. �

�

2 SF

�

sine �

�

= ; and ; is �nite.

2. If � � �, then �

�

2 SF

�

sine �

�

= �

�

n (�

�

� (� n�) � �

�

)

3. � = fa; bg Then a(ba)

�

2 SF

�

sine

a � (ba)

�

= a � (�

�

n (a�

�

[ �

�

b [ �

�

aa�

�

[ �

�

bb�

�

))

The example shows that languages whose straight{forward representation

uses star may well be star{free.

How an we deide, for a given regular language, whether it is star{free or

not? More onretely: how an we show that a(aa)

�

is not star{free?

These questions an be answered by looking at a haraterization of star{free

languages using �nite monoids.

3.2 Aperiodi monoids

In hapter 2 we have seen that for an element m of a �nite semigroup the

set fm;m

2

; m

3

; : : :g always ontains an idempotent:

m

-

m

2

-

� � �

-

m

i

j

m

i+1

-

m

i+2

6

� � �

�

m

i+k�1

�

For aperiodi monoids, we an hoose k = 1.

De�nition 3.3 The �nite monoid M is alled aperiodi i� there is an n � 1

suh that m

n+1

= m

n

holds for all m 2M .
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Obviously the lass Ap of aperiodi monoids is ultimately de�ned by

(x

n+1

= x

n

)

n�1

:

Note: If m

n+1

= m

n

, then m

n

0

+1

= m

n

0

for all n

0

� n. This shows that Ap

is an M{variety.

Reall: if m

i

= m

i+k

, then m

i

; m

i+1

; : : : ; m

i+k�1

is a group. If k is minimal,

this group ontains k elements.

De�nition 3.4 Let (M; �; 1) be a monoid. The subset G �M is a group in

M i� G is a subsemigroup of M (m;m

0

2 G! m �m

0

2 G) that is a group

w.r.t. the operation � of M restrited to G.

Note: The unit of the group G is an idempotent element of M , but it need

not to be the unit 1 of M .

For aperiodi monoids, the yli groups fm

i

; : : : ; m

i+k�1

g have ardinality

1. This is true for all groups in M .

Proposition 3.5 The �nite monoidM is aperiodi i� it ontains only trivial

groups (i.e. groups of ardinality 1).

Proof: (x

n+1

= x

n

)

n�1

\)" Let M be aperiodi and let n be suh that m

n+1

= m

n

for all m 2M .

Assume that G � M is a group in M with jGj > 1. Thus G ontains

in addition to its unit element e another element g 6= e. We know that

g

n+1

= g

n

. By multiplying this equation with (g

n

)

�1

, we obtain g = e.

\(" Let m 2M . We onsider fm;m

2

; m

3

: : :g. Let k be minimal suh that

there is an i withm

i+k

= m

i

. Then we know that fm

i

; m

i+1

; : : : ; m

i+k�1

g

is a group in M , and thus k = 1 sine M ontains only trivial groups.

Thus we have for all m 2M an i

m

� 1 suh that m

i

m

+1

= m

i

m

. Obvi-

ously, m

j+1

= m

j

for all j � i

m

. Thus, if n � maxfi

m

j m 2 Mg then

m

n+1

= m

n

holds for all m 2 M .
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We are interested in aperiodi monoids sine the orrespond to star{free

languages.

Proposition 3.6 (Sh�utzenberger) L(Ap) = SF , i.e. for all L � �

+

:

M

L

2 Ap i� L 2 SF

�

:

The proof (in partiular of \)") is rather involved (see Automata, Languages,

and Mahines).

Corollary 3.7 Let L � �

�

a regular language (given by regular expression,

�nite automaton, . . . ). Then it is deidable whether L 2 SF

�

or not.

Proof: Construt the syntati monoid M

L

, and then test whether it is

aperiodi.

Example 3.8 Let � = fag. Then a(aa)

�

=2 SF

�

.

Proof: The minimal automaton for L = a(aa)

�

is

-

1

-

a

�

a

2

Transition monoid

Æ

�

=

1 2

1 2

Æ

a

=

1 2

2 1

Æ

aa

= Æ

�

Thus M

L

= fÆ

�

; Æ

a

g with unit element Æ

�

and Æ

a

Æ Æ

a

= Æ

�

. Consequently M

L

itself is a group of ardinality > 1. Thus M

L

is not aperiodi.
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3.3 Formula of �rst{order{logi

We will show that the star{free languages are exatly the ones de�nable by

�rst order formulae.

Proposition 3.9 For a language L � �

+

the following are equivalent

1. L 2 SF

�

.

2. L = L(') for a losed formula ' of �rst{order prediate logi using the

extra logial symbols =, <, Q

a

(a 2 �).

Note: Instead of P

1

; : : : ; P

k

we use Q

a

for a 2 � diretly. This is just for

onveniene.

The proof of \1! 2" is rather simple, whereas \2! 1" is more involved.

3.3.1 Proof of \1! 2" of Theorem 3.9

Star{free languages are obtained from the �nite languages using Boolean

operations and onatenation.

Finite languages

Obviously, it is suÆient to onsider singleton sets fwg for w 2 �

+

. Let

w = a

1

� � �a

n

2 �

+

.

'

w

: 9x

1

; : : : ; x

n

Q

a

1

(x

1

) ^ : : : ^Q

a

n

(x

n

) ^

n�1

^

j=1

�

x

j

< x

j+1

^ :9z (x

j

< z ^ z < x

j+1

)

�

^

:9z (z < x

1

_ x

n

< z)

Obviously, L('

w

) = fwg.
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Boolean operations

Boolean operations orrespond to the logial onnetives ^, _, : (by Prop. 1.26).

Conatenation

Conatenation orresponds to the existential quanti�er (in priniple).

First, let us onsider an example: L

1

:= a

+

and L

2

:= b

+

'

1

: 8x:Q

a

(x) is a formula de�ning L

1

and

'

2

: 8x Q

b

(x) is a formula de�ning L

2

A formula for L

1

� L

2

:

9z (8x (x � z ) Q

a

(x)) ^ 8x (x > z ) Q

b

(x)) ^ 9z

0

z

0

> z)

The quanti�er in '

1

is relativized to the position � z and the one in '

2

to

the position > z. In general, the relativization '

�z

of ' to the position � z

is de�ned as follows:

� ( 

1

^  

2

)

�z

=  

�z

1

^  

�z

2

� ( 

1

_  

2

)

�z

=  

�z

1

_  

�z

2

� (: )

�z

= :( 

�z

)

� (9x  (x))

�z

= 9x (x � z ^  (x)

�z

)

� (8x  (x))

�z

= 8x (x � z )  (x)

�z

)

(where we assume that � does not our in the formula.)

The relativization '

�z

is de�ned analogously.

Assume that L = L

1

�L

2

� �

+

and that L

1

and L

2

are star{free. If L

1

; L

2

2

�

+

then we know by indution that there are formulae '

1

and '

2

with

L

1

= L('

1

); L

2

= L('

2

). Then L

1

� L

2

= L (9z ('

�z

1

^ '

�z

2

^ 9z

0

z < z

0

))

If say L

2

ontains ", then L

1

� L

2

= L

1

� (L

2

n f"g) [ L

1

.
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3.3.2 Proof of \2! 1" of Theorem 3.9

To show that every losed formula of PL1 de�nes a star{free language we

want to use indution over the quanti�er{depth of the formula, i.e. the max-

imal nesting of quanti�ers in the formula (every losed formula ontains at

least one quanti�er.).

Sine we have negation, we may assume that the formula ontains only exis-

tential quanti�ers.

Sine the onnetives ^;_;: orrespond to \;[;

�

of languages, it is suÆient

to onsider formulae of the form 9x '(x)

Indution base: quanti�er{depth 1

Thus ' does not ontain any quanti�ers and sine 9x '(x) is losed, ' does

not ontain variables di�erent from x. We an assume without loss of gener-

ality that ' is a positive Boolean ombination (only ^;_) of formulae

� Q

a

(x) or :Q

a

(x),

� x < x or :(x < x),

� x = x oder :(x = x).

We assume that ' is in disjuntive normal form D

1

_ : : : _D

n

. Disjunt D

i

is of the form C

1

^ : : : ^ C

m

. This an be further normalized:

� replae x < x, :(x = x) by false, i.e. remove any disjunt D

j

ontaining

suh an expression.

� replae :(x < x); x = x by true, i.e. remove it from the disjunt.

� if a disjunt ontains Q

a

(x), then

{ remove the whole disjunt if it ontains :Q

a

(x) or Q

b

(x) for a 6= b

{ otherwise remove from the disjunt all :Q

b

(x) for b 6= a

Thus, we end up with disjunts of the form
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� Q

a

(x),

� :Q

a

1

(x) ^ : : : ^ :Q

a

n

(x).

Sine (9x D

1

^ : : : ^D

n

) � 9x D

1

: : :9x D

n

, we an restrit the attention to

� 9x Q

a

(x)

� 9x (:Q

a

1

(x) ^ : : : ^ :Q

a

n

(x))

L(9x Q

a

(x)) = �

�

a�

�

2 SF

�

L(9x (:Q

a

1

(x) ^ : : : ^ :Q

a

n

(x))) = �

�

� (� n fa

1

; : : : ; a

n

g) � �

�

2 SF

�

This ompletes quanti�er{depth 1.

Indution step: n! n + 1

Let 9x '(x) be of quanti�er{depth n+1. Before we an show that L(9( x)'x)

is star{free, we need some notation and two propositions.

De�nition 3.10 With L

k;n

we denote the set of formulae of PL1 (over the

extra logial symbols =, <, Q

a

for a 2 �) having k free variables and

quanti�er{depth � n

Example: ' = 9x (y < x ^ x < z ^Q

a

(x)) belongs to L

2;1

. To interpret this

formula, a word (e.g. baa) is not enough. We must also say how y and z are

interpreted (e.g. y by 1 (�rst position in baa) and z by 3 (third position in

baa)). We say that (baa; 1; 3) satis�es '.

In general, formulae from L

k;n

are interpreted by tuples (w;~s) where w 2 �

+

and ~s = s

1

� � � s

k

with s

i

2 f1; : : : ; jwjg. \(w;~s) satis�es ' 2 L

k;n

" (w;~s) j= '

is de�ned in the obvious way. For k = 0, we dispense with the empty sequene

~s.

De�nition 3.11 For n � 0 and k � 0 we de�ne

(w;~s) �

k;n

(v;

~

t) i� for all ' 2 L

k;n

we have

(w;~s) j= ' i� (v;

~

t) j= ':
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Obviously �

k;n

is an equivalene relation. For k = 0 we write �

n

in plae

of �

0;n

. In this ase, we extend �

n

to �

�

by de�ning " �

n

", i.e. f"g is a

�

n

{equivalene lass.

To proof \2 ! 1" of Theorem 3.9, we need two propositions, whih we will

prove in separate subsetions.

Proposition 3.12 For all n � 0 and k � 0 there is a �nite set �

k;n

� L

k;n

suh that every element of L

k;n

is equivalent to some element of �

k;n

.

Equivalent means that the formulae are satis�ed by the same tuples (w;~s).

As a simple onsequene of this proposition we obtain �

k;n

has �nite index.

Corollary 3.13 For all k � 0 and n � 0, �

k;n

has only �nitely many

equivalene lasses.

Proof: The lass of (w;~s) is uniquely determined by the following subset of

�

k;n

:

� = f' 2 �

k;n

j (w;~s) j= 'g

Sine there are only �nitely many suh subsets of �

k;n

, there are only �nitely

many equivalene lasses.

We an extend the notion of the language de�ned by a formula also to formu-

lae with free variables: for ' 2 L

k;n

we de�ne L(') := f(w;~s) j (w;~s) j= 'g.

Corollary 3.14 For all n � 0 and k � 0 and all �

k;n

{lasses W there is a

formula '

W

2 L

k;n

suh that W = L('

W

).

Proof:

W = [(w;~s)℄

�

k;n

= L(

^

'2�

k;n

(w;~s)j='

' ^

^

 2�

k;n

(w;~s)6j= 

: )
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Corollary 3.15 For all n � 0 and k � 0 and all ' 2 L

k;n

the following

holds: ' is equivalent to a �nite disjuntion of formulae '

W

for �

k;n

{lasses

W .

Proof:

' is equivalent to

_

W=[(w;~s)℄

�

k;n

(w;~s)j='

'

W

:

This disjuntion is �nite sine �

k;n

has �nite index.

The seond proposition shows a onnetion between �

0;n

and �

1;n

.

Proposition 3.16 Let n � 0; u; v; u

0

; v

0

2 �

�

and a 2 �.

u �

n

u

0

^ v �

n

v

0

) (uav; juj+ 1) �

1;n

(u

0

av

0

; ju

0

j+ 1)

We are now ready to �nish the indution step. Thus, let 9x '(x) be a losed

formula of quanti�er{depth n+1. Consequently, '(x) 2 L

1;n

and thus ' is a

�nite disjuntion '(x) =

W

'

W

(x). Consequently, 9x '(x) is equivalent to

W

9x '

W

(x).

Thus is enough to show L(9x '

W

(x)) are star{free.

Lemma 3.17

L(9x '

W

(x)) =

[

U=[u

0

℄

�

0;n

; V=[v

0

℄

�

0;n

a2� mit(u

0

av

0

;ju

0

j+1)2W

UaV

Proof:

\�"

w 2 L(9x '

W

(x)) i� there exist u; v 2 �

�

suh that w = uav

and (uav; juj+ 1) j= '

W

(x)

i� there exist u; v 2 �

�

; a 2 � suh that w = uav

and (uav; juj+ 1) 2 W

Consequently w 2 [u℄a[v℄ and [u℄a[v℄ ours in the union on the right{

hand side.

Marh 3, 2005 47



CHAPTER 3. STAR{FREE LANGUAGES

\�" From (u

0

av

0

; ju

0

j + 1) 2 W it follows that (u

0

av

0

; ju

0

j + 1) j= '

W

(x),

and thus u

0

av

0

2 L(9x '

W

(x)).

It remains to show that for all u �

1;n

u

0

and v �

1;n

v

0

we also have

uav 2 L(9x '

W

(x)).

With Prop. 3.16 we have (u

0

av

0

; ju

0

j + 1) �

1;n

(uav; juj+ 1) and thus

(uav; juj+ 1) 2 W . As above, thus implies uav j= 9x '

W

(x).

By Corollary 3.14, the �

0;n

{lasses U; V of the lemma are of the form U =

L('

U

), V = L('

V

) for '

U

; '

V

2 L

0;n

or U = f"g or V = f"g. So the

indution hypothesis yields that L('

V

) and L('

U

) are also star{free: Sine

star{free languages are losed under union and onatenation, L(9x '

W

(x))

is star{free.

3.3.3 Proof of Propositions 3.12 and 3.16

Proposition 3.12 For all n � 0 and k � 0 there is a �nite set �

k;n

� L

k;n

suh that every element of L

k;n

is equivalent to some element of �

k;n

.

Proof: We prove this proposition by indution on n.

Let ' 2 L

k;n

. Suh a formula is a Boolean ombination of

� elements of L

k;n�1

� formulae of the form 9x  (x; y

1

; : : : ; y

k

) where  (x; y

1

; : : : ; y

k

) 2 L

k+1;n�1

Indution base n = 0: Let k � 0 be arbitrary. A formula '(y

1

; : : : ; y

k

) 2

L

k;0

is a Boolean ombination of atomi formulae.

(�) Q

a

(x) for a 2 �; x < y; x = y where x; y 2 fy

1

; : : : ; y

k

g:

Without loss of generality, we onsider only elements of L

k;0

ontaining

free varibales from fy

1

; : : : ; y

k

g. But then there are only �nitely many

formulae of the form (�). Thus, there are only �nitely many Boolean

ombinations of these formulae (up to equivalene).
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Indution step (n� 1! n): Assume that we already have �nite sets �

k;n�1

and �

k+1;n�1

with the desired properties. Thus ' is equivalent to

a Boolean ombination of elements of �

k;n�1

and formula 9x  with

 2 �

k+1;n�1

. Thus, up to equivalene there are �nitely many suh

Boolean ombinations.

Our proof of Prop. 3.16 will use a game theoreti haraterization of the

relations �

k;n

.

De�nition 3.18 [Ehrenfeuht{Fraiss�e games℄ Let � be a �nite alphabet.

We onsider two players I und II, who play on words u; v 2 �

+

. A move

hooses a position in either u or v. Player I has the �rst move and then there

are alternating moves from II and I. If I moves in u then II must answer in

v, and if I moves in v then II must answer in u.

A game of length n onsists of n moves of I and of the n answer moves of II.

Let (i

1

; j

1

); : : : ; (i

n

; j

n

) be the hosen positions, where i

�

is the position in u

and j

�

the position in v (independent on whih player has hosen them).

Player II has won this game i� the following holds:

Let u = a

1

: : : a

p

and v = b

1

: : : b

q

. Then:

� a

i

�

= b

j

�

for � = 1; : : : ; n, i.e. at the positions hosen in move � we

have the same letter.

� i

�

< i

�

0

i� j

�

< j

�

0

, i.e. the relative plaement of the positions must be

the same.

Otherwise, II has lost and I has won.

Example 3.19 n = 3

Let � = fag. Thus only the order of the hosen positions is relevant.

1 2 3 4 5 6 7

u = a a a a a a

I,2 II,1

v = a a a a a a a

II,2 I,1
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II; 1 on 5 or 6 would let I win the game by plaing �rst 6 in v and then 7 in

v. II; 2 ould have also hosen 3 in v instead of 2

Whereever I moves in the third move, II an answer appropriately and thus

II wins.

Example 3.20 n = 3; � = fa; bg

1 2 3 4

u = b b a b

I,3 I,2 I,1

v = b a b b

II,2 II,1

II; 1 must hoose the a in v and II,2 must hoose the b to the left of a in v.

II annot answer the third move of I appropriately.

De�nition 3.21 Let n � 1 and u; v 2 �

+

. We say that II has a winning

strategy for games of length n on u; v i� II an answer all possible moves of

I suh that II wins.

To be able to use indution arguments, we will also onsider games, that

have already started.

Let u; v 2 �

+

and ~s = s

1

: : : s

k

2 f1; : : : ; jujg

k

and

~

t = t

1

: : : t

k

2 f1; : : : ; jvjg

k

.

Then the pair (u;~s) and (v;

~

t) desribes a game where already k moves have

been made by eah player. A game of length n on this pair is a ontinuation

of this game by n moves. Player II wins this ontinuation game i� II wins

the whole game.

De�nition 3.22 Let (u;~s) and (v;

~

t) be given where u; v 2 �

+

and ~s 2

f1; : : : ; jujg

k

,

~

t 2 f1; : : : ; jvjg

k

.

(u;~s) �

k;n

(v;

~

t) i� II has a winning strategy for games of

length n on (u;~s) and (v;

~

t).

For k = 0 we extend �

0;n

to �

�

by making f�g a �

0;n

{lass.

Lemma 3.23 �

k;n

is an equivalene relation.
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Proof:

reexive: game played on (u;~s) and (u;~s). II just simulates the moves of I.

symmetri: lear sine I an move in both words.

transitive: Let WS1 be the strategy that shows (u;~s) �

k;n

(v;

~

t) and WS2

be the strategy that shows (v;

~

t) �

k;n

(w;~r). The winning strategy for

II on (u;~s) and (w;~r) works as follows:

� if I moves in u, then II answers �rst with WS1 in v, and then to

this move with WS2 in w.

� if I moves in w, then II answers with WS2 in v, and to this move

with WS1 in u

We will show �

k;n

= �

k;n

.

For �

k;n

, the orresponding statement of Prop. 3.16 an easily be proved:

Lemma 3.24 Let n � 0, u; v; u

0

; v

0

2 �

�

and a 2 �.

u �

0;n

u

0

^ v �

0;n

v

0

) (uav; juj+ 1) �

1;n

(u

0

av

0

; ju

0

j+ 1)

Proof: We onsider the ase where u; v; u

0

; v

0

2 �

+

. (The other ases an

be treated analogously.)

Let WS1 be the startegy that yields u �

0;n

u

0

and WS2 the strategy that

yields v �

0;n

v

0

.

If I moves in u (u

0

), then II answers with WS1 in u

0

(u).

If I moves in v (v

0

), then II answers with WS2 in v

0

(v).

If I moves juj + 1 in uav (ju

0

j + 1 in u

0

av

0

), then II answers u

0

+ 1 in u

0

av

0

(juj+ 1 in uav).

Obviously, this yields a winning strategy for II on (uav; juj+1) and (u

0

av

0

; ju

0

j+

1)
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To prove Proposition 3.16, it is enough to show that �

k;n

and �

k;n

oinide.

First, an intuitive argument. The hanes for II to win are the greater the

more similar the tuples are. If they are in the relation �

k;n

they annot be

distinguished by formulae of quanti�er{depth n, and are thus similar.

The onnetion between quanti�er{depth and the number of moves is also

quite lear: 9x '(x) says that there exists a position with ertain porperties.

A move piks a position.

Lemma 3.25 For all n; k � 0 we have

�

k;n

= �

k;n

i.e. (u;~s) �

k;n

(v;

~

t) i� (u;~s) �

k;n

(v;

~

t).

Proof: by indution on n

Indution base n = 0: Let (u;~s) and (v;

~

t) be given.

1. Assume that (u;~s) �

k;0

(v;

~

t). Assume that the free variables are from

the set fy

1

; : : : ; y

k

g where y

i

orresponds to the i{th omponent in ~s

and

~

t. Let u = a

1

� � �a

p

, v = b

1

� � � b

q

. For the atomi formulae y

i

< y

j

,

y

i

= y

j

, Q

a

(y

i

), the equivalene (u;~s) �

k;0

(v;

~

t) implies that (u;~s) and

(v;

~

t) behave the same on these formulae:

a) (u;~s) j= y

i

< y

j

i� (v;

~

t) j= y

i

< y

j

(�) b) (u;~s) j= y

i

= y

j

i� (v;

~

t) j= y

i

= y

j

) (u;~s) j= Q

a

(y

i

) i� (v;

~

t) j= Q

a

(y

i

)

This is equivalent to saying

a) s

i

< s

j

i� t

i

< t

j

(��) b) s

i

= s

j

i� t

i

= t

j

) a

s

i

= a i� b

t

i

= a

However, a) and ) of (��) is exatly the ondition that II has won the

game (without additional moves sine n = 0). And thus (u;~s) �

k;0

(u;

~

t).
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2. Conversely, assume that (u;~s) �

k;0

(v;

~

t). Consequently II has won

the game (without additional moves). This shows that a) and ) of

(��) hold. Condition b) follows from a) sine < is a total ordering.

This yields a) b) ) of (�), and thus (u;~s) and (v;

~

t) behave the same

on atomi formulae. Thus, they behave the same on their Boolean

ombinations, whih are all the elements of L

k;0

. This shows (u;~s) =

k;0

(v;

~

t).

Indution step n! n+ 1:

1. Assume that (u;~s) �

k;n+1

(v;

~

t). Let '(y

1

; : : : ; y

k

) 2 L

k;n+1

and assume

that (u;~s) j= '. It is suÆient to show that this implies (v;

~

t) j= '.

Sine Boolean operators are unproblemati, it is enough to assume that

' is of the form ' = 9y

k+1

 (y

1

; : : : ; y

k

; y

k+1

) where  2 L

k+1;n

.

Sine (u;~s) �

k;n+1

(v;

~

t), II an answer appropriately the �rst move of

I. Thus, for every s

k+1

2 f1; : : : ; jujg there is a t

k+1

2 f1; : : : ; jvjg suh

that

(u;~ss

k+1

) �

k+1;n

(v;

~

tt

k+1

):

Indution yields that for all s

k+1

there exists a t

k+1

suh that

(u;~ss

k+1

) �

k+1;n

(v;

~

tt

k+1

) (�)

Sine (u;~s) j= 9y

k+1

 (y

1

; : : : ; y

k

; y

k+1

) there is an s

k+1

with

(u;~ss

k+1

) j=  (y

1

; : : : ; y

k

; y

k+1

) (��)

Let t

k+1

be suh that (�) holds. Sine  2 L

k+1;n

, (�) and (��) imply

(v;

~

tt

k+1

) j=  (y

1

; : : : ; y

k

; y

k+1

):

This shows that

(v;

~

t) j= 9y

k+1

 (y

1

; : : : ; y

k

; y

k+1

):

2. Assume that (u;~s) 6�

k;n+1

(v;

~

t). We are looking for a formula ' 2

L

k;n+1

suh that ' is satis�ed by one of the two tuples (u;~s) and (v;

~

t),

but not by the other one.
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Sine (u;~s) 6�

k;n+1

(v;

~

t), there is a �rst move of I that II annot answer

appropriatly (i.e. after the �rst move II still does not have a winning

strategy). Without loss of generality we assume that this �rst move is

in u. Thus there is an s

k+1

suh that for all t

k+1

we have

(u;~ss

k+1

) 6�

k+1;n

(v;

~

tt

k+1

):

Indution yields:

(u;~ss

k+1

) 6�

k+1;n

(v;

~

tt

k+1

):

We now �x this s

k+1

. For all t

k+1

there is thus a formula  

t

k+1

(y

1

; : : : ; y

k+1

) 2

L

k+1;n

suh that

(u;~ss

k+1

) j=  

t

k+1

(�)

(v;

~

tt

k+1

) 6j=  

t

k+1

(��)

From (�) it follows that '

t

k+1

:= 9y

k+1

 

t

k+1

satis�es (u;~s) j= '

t

k+1

.

Unfortunately, (��) does not imply (v;

~

t) 6j= '

t

k+1

. The reason is that

there may be a t 6= t

k+1

suh that (v;

~

tt) j=  

t

k+1

.

Instead of '

t

k+1

we onsider the formula

' := 9y

k+1

^

1�t

k+1

�jvj

 

t

k+1

(3.1)

Beause of (�) we know that (u;~s) j= '. Beause of (��), for every t

k+1

there is one onjunt in ' that is not satis�ed if we substitute y

k+1

by

t

k+1

. Thus (v;

~

t) 6j= '.

Note: Lemma 3.25 also holds for in�nite words. To obtain a �nite onjun-

tion in the de�nition of ' in (3.1), one uses the fat that every formula in

L

k+1;n

is equivalent to a formula in the �nite set �

k+1;n

.

This �nishes the proof of Theorem 3.16. Sine not all regular languages

are star{free (example a(aa)

�

) there are regular languages that annot be

de�ned by formulae of PL1. To obtain all regular languages, we must add

quanti�ation over unary prediates (see Example 1.28). We will not show

this here, but later on we will show it for the ase of in�nite words.
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Simple appliation: a deidability result in logi

Theory of linear orderings

Lin =

f 8x8y8z(x < y ^ y < z ! x < z)

8x :(x < x)

�

strit partial order

8x 8y (x < y _ x = y _ y < x) g linear

Proposition 3.26 Let ' be a losed formula of PL1 that ontains only the

extra{logial symbols <;=; P

1

; : : : P

n

(unary). Then it is deidable whether

Lin [ f'g has a �nite model.

Proof: We know that L(') is a star{free language. The proof of Theo-

rem 3.9 is onstrutive, i.e., given a formula ', we an e�etively onstrut

a star{free expression (using �nite languages, Boolean operations, and on-

atenation) for L('). In priniple, this is due to the fat that the �nite set

�

k;n

from Prop 3.12 an e�etively be onstruted (and thus the �

k;n

{lasses,

the formula '

W

, : : :)

It is easy to see that L(') 6= ; i� Lin [ f'g has a �nite model. The star{

free expression for L(') an be transfered into a regular expression for L(')

(losure of Reg

�

under \;

�

). For regular expressions, the emptiness problem

is deidable.

Sometimes, one would like to onsider also in�nite models of Lin. This is

one motivation for also onsidering in�nite words.
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In�nite words and

B�uhi{automata

Before introduing in�nite words formally, let us reonsider �nite words. Let

� be an alphabet. A �nite word u 2 �

+

is a sequene u = a

0

� � �a

k�1

of k

elements a

i

2 �. One an view u as a mapping

u : f0; : : : ; k � 1g ! � : i 7! a

i

Thus �nite words are mappings from an initial segment of the natural num-

bers into the alphabet. In�nite words are mappings from the set of all natural

numbers into the alphabet. Sine we are only interested in the ordering of

natural numbers (and not in the arithmeti operations), we denote the nat-

ural numbers by ! (omega) (! is the order type of the natural numbers).

De�nition 4.1 1. An in�nite word over � is a mapping � : ! ! �.

2. �

!

denotes the set of all in�nite words over �.

3. Subsets of �

!

(i.e. sets of in�nite words) are alled ?w-langauges�!{

languages

We will often write in�nite words as � = a

0

a

1

a

2

a

3

� � � where a

i

= �(i).
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Example 4.2 � = fa; bg

�(i) =

�

a if i is even

b if i odd

� an be written as � = ababab � � � .

Some operations on in�nite words and !{languages:

Segment: if � : ! ! � is an in�nite word then

� �(m;n) is the �nite word �(m) � � ��(n)

� �(m;!) is the in�nite word �(m)�(m+ 1)�(m+ 2) � � � .

Conatenation: let w = a

1

� � �a

m

be a �nite word and � = �(0)�(1) � � � an

in�nite word. Then w � � is the in�nite word

a

1

� � �a

m

�(0)�(1)�(2) � � � :

Note: It does note make sense to onatenate two in�nite words.

As usual, onatenation an be extended from words to sets of words

In�nite iteration: let L � �

�

be a set of �nite words

L

!

:= f� 2 �

!

j � = w

0

w

1

w

2

� � � for words w

i

2 L n f�gg

Example: L = fabg

L

!

= fabababab � � � g: We often write L

!

= (ab)

!

:

Limit: let L � �

�

be a set of �nite words.

limL = f� 2 �

!

j there are in�nitely many n that �(0; n) 2 Lg:

Example 4.3 � = fa; bg.

1. L = a

�

b : limL = ; sine any in�nite word an have at most one initial

segment in a

�

b.

2. L = ba

�

: limL = fbaaa � � � g = ba

!

3. L = (a

�

bb

�

)

�

: limL = f� 2 �

!

j after eah ourrene of a in � there

eventually follows an ourrene of bg
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4.1 B�uhi{automata and !{regular languages

Automata working on in�nite words are de�ned like the \usual" �nite au-

tomata. The distintion omes in when de�ning the aeptane ondition.

De�nition 4.4 A B�uhi{automaton is a (non{det.) �nite automaton A =

(Q;�; I;�; F ), i.e.,

� Q is a �nite sets of states

� � is a �nite alphabet

� I � Q is the set of initial states

� � � Q� ��Q is the transition relation

� F � Q is the set of �nal states

Sine we are interested in in�nite words, we onsider in�nite paths q

0

a

1

�!

A

q

1

a

2

�!

A

q

2

a

3

�!

A

q

3

a

4

�!

A

q

4

� � � where (q

i

; a

i+1

; q

i+1

) 2 �. The label of this

in�nite path is the in�nite word a

1

a

2

a

3

a

4

� � � .

For �nite paths, we said that they are suessful if

i) q

0

2 I

ii) q

n

2 F

For in�nite paths, there is no suh �nal state q

n

. Instead, we require that

�nal states are reahed in�nitely often.

The in�nite path q

0

a

1

�! q

1

a

2

�! q

2

a

3

�! : : : is alled suessful i�

i) q

0

2 I

ii) There are in�nitely many i suh that q

i

2 F

The B�uhi{automaton A aepts the !{language

L

!

(A) = f� 2 �

!

j � is the label of a suessful path in Ag:

Suh an !{language is alled B�uhi{reognizable.
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Example 4.5 � = fa; b; g.

1. A

1

:

1 2

b

a

b;  a; 

L

!

(A

1

) = f� 2 �

!

j after every a there eventually is bg

The letter a leads to state

2

. From

2

the aepting state

1

ist only

reahed through b.

2. A

2

:

1 2

b;  a

b; 

3

b; 

a

L

!

(A

2

) = f� 2 �

!

j between two onseutive a's there is

an even number of b's and 'sg

It is easy to see that L

!

(A

2

) = L

2

.

To investigate the languages aepted by B�uhi{automata more losely, we

introdue some notation.

Let A = (Q;�; I;�; F ) be a B�uhi{automaton and p; q 2 Q. We view A

as a �nite automaton where p is the initial and q is the �nal state. This

automaton aepts the language

L

p;q

:= fw 2 �

�

j w is the label of some �nite path from p to q in Ag

Thus, L

p;q

are regular languages.

Lemma 4.6

L

!

(A) =

[

i2I;f2F

L

i;f

� L

!

f;f

:
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Proof:

\�" Let � = a

1

a

2

a

3

a

4

� � � 2 L

!

(A). By de�nition of L

!

(A) there is a path

I 3 q

0

a

1

�!

A

q

1

a

2

�!

A

q

2

a

3

�!

A

q

3

a

4

�!

A

� � � suh that in�nitely often

q

i

2 F . Sine F is �nite, there is a single state f 2 F suh that there

are in�nitely many indies i

1

< i

2

< i

3

< � � � with q

i

�

= f . Thus,

we have a

1

� � �a

i

1

2 L

q

0

;f

and a

i

v

+1

� � �a

i

v+1

2 L

f;f

n f"g (� � 1). This

shows that � 2 L

q

0

;f

� L

!

f;f

where q

0

2 I and f 2 F .

\�" Let � = w

0

w

1

w

2

w

3

� � � where w

0

2 L

i;f

and w

i

2 L

f;f

n f"g (i � 1).

Thus, the path i

w

0

�!

A

f

w

1

�!

A

f

w

2

�!

A

f

w

3

�!

A

� � � is a suessful path,

whih shows that � = w

0

w

1

w

2

w

3

� � � 2 L

!

(A).

The next lemma states simple losure properties of B�uhi{reognizable lan-

guages.

Lemma 4.7

1. If U � �

�

is regular, then U

!

is B�uhi{reognizable.

2. If U � �

�

is regular and L � �

!

is B�uhi{reognizable, then U � L is

B�uhi{reognizable.

3. If L

1

; L

2

� �

!

are B�uhi{reognizable, the so are L

1

[ L

2

and L

1

\L

2

.

Proof:

1. Reall that U

!

= f� 2 �

!

j � = u

1

u

2

u

3

� � � with u

i

2 U n f"gg. If U is

regular, then U n f�g is also regular. It is easy to see that there is an

automaton A for U n f"g that satis�es the following:

� A = (�; Q; fq

0

g;�; F ), i.e., A has a single initial state.

� for all a 2 �; q 2 Q we have (q; a; q

0

) 62 �, i.e., q

0

annot be

reahed.
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Let A be suh an automaton for U n f"g.

We de�ne A

0

:= (�; Q; fq

0

g;�

0

; fq

0

g) where

�

0

= � [ f(q; a; q

0

) j 9f 2 F : (q; a; f) 2 �g:

It is easy to show (!) that L

!

(A

0

) = U

!

.

Note: the ondition that q

0

is not reahable is neessary (!).

2. Let A = (Q

1

;�; I

1

;�

1

; F

1

) be a �nite automaton for U and B =

(Q

2

;�; I

2

;�

2

; F

2

) be a B�uhi{automaton for L. We may assume that

Q

1

\Q

2

= ;.

C = (Q

1

[Q

2

;�; I

0

;�

0

; F

2

) where

I

0

= I

1

[

�

; if I

1

\ F

1

= ;

I

2

if I

1

\ F

1

6= ;

�

0

= �

1

[�

2

[ f(q; a; q

0

) j 9f 2 F

1

� (q; a; f) 2 �

1

� q

0

2 I

2

g

It is easy to show that L

!

(C) = U � L.

3. Union: Exerise!

Intersetion Let A

i

= (Q

i

;�; I

i

;�

i

; F

i

) be a B�uhi{automaton for

L

i

(i 2 f1; 2g). We de�ne

B := (Q

1

�Q

2

� f0; 1; 2g;�; I

1

� I

2

� f0g;�; F )

where

� := f((q

1

; q

2

; i); a; (q

0

1

; q

0

2

; j)) j

� (q

1

; a; q

0

1

) 2 �

1

and (q

2

; a; q

0

2

) 2 �

2

� i = 0 ^ q

0

1

2 F

1

) j = 1

i = 1 ^ q

0

2

2 F

2

) j = 2

i = 2 ) j = 0

otherwise; i = jg

This means the following: we start with 0 in the 3

rd

omponent. If

we reah for the �rst time some f

1

2 F

1

, then the third omponent

beomes 1. If after that we reah for the �rst time some f

2

2 F

2

,
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then the third omponent beomes 2 and immediately after that

0. If we reah in�nitely often elements of F

1

and in�nitely often

elements of F

2

, then we go through this round in�nitely often.

Thus, we have in�nitely often in the third omponent 2. Thus we

must de�ne:

F := Q

1

�Q

2

� f2g

Proposition 4.8 [B�uhi, 1962℄

1. An !{language L � �

!

is B�uhi{reognizable i� there are regular lan-

guages U

1

; : : : ; U

m

; V

1

; : : : ; V

m

� �

�

suh that

L =

m

[

i=1

U

i

� V

!

i

:

2. We an assume without loss of generality that V

i

� V

i

� V

i

.

Proof:

\)" of 1) as well as 2) follows from Lemma 4.6:

L =

[

i2I;f2F

L

i;f

� L

!

f;f

and L

f;f

� L

f;f

� L

f;f

:

\(" of 1) is an immediate onsequene of Lemma 4.7.

Beause of this lose onnetion to regular languages, B�uhi{reognizable

languages are alled !{regular . If U

i

; V

i

are given by regular expressions and

if L =

S

m

i=1

U

i

� V

!

i

, then we all

S

m

i=1

U

i

� V

!

i

an !{regular expression for L.
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Example 4.9 : onsider the automaton A

2

from Example 4.5:

1 2

b;  a

b; 

3

b; 

a

L

1;1

= (b [ )

�

;

L

1;2

= (b [ )

�

� a � L

2;2

;

L

2;2

= (a [ ((b [ ) � (b [ )))

�

;

L

!

(A

2

) = L

1;1

� L

!

1;1

[ L

1;2

� L

!

2;2

= L

!

1;1

[ L

1;2

� L

!

2;2

= ((b [ )

�

)

!

[ (b [ )

�

� a � L

2;2

� L

!

2;2

(U

�

)

!

= U

!

U � U

!

= U

!

= (b [ )

!

[ (b [ )

�

� a � (a [ (b [ ) � (b [ ))

!

:

The haraterization of B�uhi{reognizable languages also shows that the

emptiness problem is deidable.

Proposition 4.10

1. Given a B�uhi{automatonA, we an e�etively deide whether L

!

(A) =

; or not.

2. If L

!

(A) 6= ;, then L

!

(A) ontains an ultimately periodi word, i.e. a

word of the form uvvvv � � � for u 2 �

�

; v 2 �

+

.

Proof:

1. Let A = (Q;�; I;�; F ). Then Lemma 4.6 says that L

!

(A) =

S

i2I;f2F

L

i;f

�L

f;f

. We know that, L

!

(A) 6= ; i� there is an i 2 I; f 2 F

suh that L

i;f

6= ; and L

f;f

nf"g 6= ;. There are �nitely many suh pairs

i; f , and for eah pair L

i;f

and L

f;f

n f"g are regular. The emptiness

problem for regular languages is deidable. This shows 1.
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2. If L

!

(A) 6= ; then there is an i 2 I; f 2 F; u 2 �

�

and v 2 �

+

suh that

u 2 L

i;f

and v 2 L

f;f

n f"g. But then uvvvv � � � 2 L

i;f

� L

!

f;f

� L

!

(A).

What about the equivalene problem \L

1

= L

2

"?

For regular languages, deidability of the equivalene problem follows from

the deidability of the emptiness problem sine the lass of regular languages

is losed under [;\;

�

:

L

1

= L

2

i� (L

1

\ L

2

) [ (L

1

\ L

2

) = ;

For !{regular languages, we still must show losure under

�

.

How an one show losure under omplement for regular languages?

1. Make the �nite automaton deterministi (power set onstrution)

2. In the deterministi automaton, exhange �nal states with non{�nal

states.

For !{languages, neither 1. nor 2. works.

Example 4.11 Let � = fa; bg. The non{deterministi B�uhi{automaton

shown below aepts the !{regular language L = (a [ b)

�

b

!

.

1 2

a; b b

b

This language annot be aepted by a deterministi B�uhi{automaton.

Proof: Assume that A = (Q;�; q

0

; Æ; F ) is a deterministi B�uhi{automaton

for L. Deterministi means: Æ : Q � � ! Q is a funtion. Sine ab

!

2 L,
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there is a k

1

> 0 and a f

1

2 F suh that q

0

ab

k

1

�!

A

f

1

: Sine ab

k

1

ab

!

2 L and

A is deterministi, there is a k

2

> 0 und f

2

2 F suh that

q

0

ab

k

1

�!

A

f

1

ab

k

2

�!

A

f

2

:

Note that this is only true sine A is deterministi!

By iterating this argument, we obtain k

1

; k

2

; k

3

; : : : > 0 and f

1

; f

2

; f

3

; : : : 2 F

suh that

q

0

ab

k

1

�!

A

f

1

ab

k

2

�!

A

f

2

ab

k

3

�!

A

f

3

ab

k

4

�!

A

f

4

� � � :

Thus, � = ab

k

1

ab

k

2

ab

k

3

ab

k

4

� � � 2 L

!

(A). However � 62 L sine it ontains

in�nitely many a's.

Example 4.12 Even for deterministi B�uhi{automaton, exhanging �nal

states states with non{�nal states does not work. Reonsider the automaton

A

1

of Example 4.5.

A

1

:

1 2

b

a

b;  a; 

L

!

(A

1

) = f� 2 fa; b; g j after eah a in � there eventually is b in �g.

A

1

:

2

b

a

b;  a; 

1

We have (ab)

!

2 L

!

(A

1

) \ L

!

(A

1

), and thus L

!

(A

1

) 6= L

!

(A

1

)

Example 4.11 shows that the lass of languages aepted by deterministi

B�uhi{automata is stritly smaller then the lass of !{regular languages.

The next proposition haraterizes this lass.
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Proposition 4.13 For L � �

!

the following are equivalent:

1. L is aepted by a deterministi B�uhi{automaton.

2. L = limU for a regular language U .

Proof:

\1! 2" Let A = (Q;�; q

0

; Æ; F ) be a deterministi B�uhi{automaton with

L = L

!

(A). Viewed as a �nite automaton,A aepts a regular language

U := L(A).

Claim: For a 2 �

!

the following are equivalent:

i) � 2 L

!

(A).

ii) � 2 limU , i.e., in�nitely many initial segments of � belong to U .

This shows L = limU . It remains to prove the laim:

i)!ii) � 2 L

!

(A)) there are f

1

; f

2

; : : : 2 F and u

1

; u

2

; : : : 2 �

+

suh

that q

0

u

1

�!

A

f

1

u

2

�!

A

f

2

u

3

�!

A

� � � . Thus, u

1

; u

1

u

2

; u

1

u

2

u

3

; : : : are

initial segments of � that belong to U .

ii)!i) Let fu

1

; u

1

u

2

; u

1

u

2

u

3

; : : :g be initial segments of � that belong

to U = L(A) where u

i

2 �

+

for i � 1. Sine A is deterministi,

this means that there are f

1

; f

2

; f

3

: : : 2 F with q

0

u

1

�!

A

f

1

u

2

�!

A

f

2

u

3

�!

A

f

3

u

4

�!

A

� � � . Thus � = u

1

u

2

u

3

u

4

� � � 2 L

!

(A).

\2! 1" Let L = limU for a regular language U . Let A be a deterministi

�nite automaton for U . Viewing A as a B�uhi{automaton yields an

!{regular language L

!

(A). Now i) $ ii) from above shows that L =

limU = L

!

(A), and thus L is aepted by a deterministi B�uhi{

automaton.
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Corollary 4.14 The lass of languages aepted by deterministi B�uhi{

automaton is not losed under omplement.

Proof: In Example 4.11 we have shown that L = (a [ b)

�

b

!

is not aepted

by a deterministi B�uhi{automaton. What is L?

L = fa; bg

!

n L onsists of those words � 2 fa; bg

!

suh that � ontains

in�nitely many a's. Thus, the following is a deterministi B�uhi{automaton

for L:

b

a

b

a

Another way of showing that L is aepted by a deterministi B�uhi{automaton

is the following:

L = lim(b

�

a)

�

4.2 Closure under omplement

The lass of !{regular languages is losed under omplement. However, the

proof is more ompliated than the one for regular languages.

Main Theorem 4.15 If L � �

!

is !{regular, then �

!

nL is also !{regular.

Idea underlying the proof: we show that L und L an be written as a �nite

union of languages U � V

!

where U; V are regular languages. The languages

U; V are obtained as equivalene lasses of a ongruene �

A

of �nite index

where A is a B�uhi{automaton for L.
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Let A = (Q;�; I;�; F ) be a B�uhi{automaton with L

!

(A) = L. We write

p

F

�!

A

w

q to indiate there is a path in A from p to q with label w that

ontains at least one state from F . We de�ne:

L

F

p;q

:= fw 2 �

�

j p

F

�!

A

w

qg

The languages L

F

p;q

are regular sine

L

F

p;q

=

[

f 2 F

L

p;f

� L

f;q

:

De�nition 4.16 �

A

is de�ned as follows: for all u; v 2 �

�

u �

A

v i� 8p; q 2 Q 1) p

u

�!

A

q i� p

v

�!

A

q

2) p

F

�!

A

u

q i� p

F

�!

A

v

q

Lemma 4.17 �

A

is a ongruene relation of �nite index.

Proof:

1. Obviously, �

A

is an equivalene relation (sine \i�" is reexive, tran-

sitive, and symmetri).

Congruene: u �

A

v ) xuy �

A

xvy for all words x; y.

Assume that u �

A

v and that p

F

���!

A

xuy

q. We want to show that this

implies p

F

�!

A

xvy

q. There are states p

0

; q

0

suh that p

x

�!

A

p

0

u

�!

A

q

0

�! yq.

Case 1: p

F

�!

A

x

p

0

Sine u �

A

v and p

0

u

�!

A

q

0

, we know that p

0

v

�!

A

q

0

, and thus

p

F

�!

A

x

p

0

v

�!

A

q

0

y

�!

A

q, i.e. p

F

���!

A

xvy

q.

Case 2: q

0

F

�!

A

y

q an be treated similarly.
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Case 3: p

0

F

�!

A

u

q

0

. Sine u �

A

v, this implies p

0

F

�!

A

v

q

0

, and thus

p

xvy

���!

A

F

q.

Thus, in all ases p

F

���!

A

xuy

q implies p

F

���!

A

xvy

q.

The other ases an be handled similarly.

2. Finite index: the �

A

{equivalene lass of w is uniquely determined by

the following pair of sets: (f(p; q) j p

w

�!

A

qg; f(p; q) j p

F

�!

A

w

qg).

Thus, there are at most 2

jQ�Qj

� 2

jQ�Qj

�

A

{lasses.

How do the �

A

{lasses look like?

Lemma 4.18

1. [w℄ =

T

p;q 2 Q

w 2 L

p;q

L

p;q

\

T

p;q 2 Q

w =2 L

p;q

L

p;q

\

T

p;q 2 Q

w 2 L

F

p;q

L

F

p;q

\

T

p;q 2 Q

w =2 L

F

p;q

L

F

p;q

:

2. In partiular, the �

A

{lasses are regular languages.

Proof:

2. is an immediate onsequene of 1. sine the languages L

p;q

and L

F

p;q

are

regular, and regular languages are losed under \ and

�

.

1. \�" Let u 2 [w℄, i.e. u �

A

w. If w 2 L

p;q

(L

p;q

; L

F

p;q

; L

F

p;q

), then

u 2 L

p;q

(L

p;q

; L

F

p;q

; L

F

p;q

).

\�" Assume that u is in the intersetion on the right{hand side. We

must show u �

A

w.

� p

w

�!

A

q ) w 2 L

p;q

) u 2 L

p;q

) p

u

�!

A

q

� p 6

w

�!

A

q ) w 2 L

p;q

) u 2 L

p;q

) p 6

u

�!

A

q.

�

F

�!

w

an be treated in the same way.
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Proposition 4.19 Let A be a B�uhi{automaton.

1. For all �

A

{lasses U; V we have:

a) UV

!

\ L

!

(A) 6= ; ) UV

!

� L

!

(A)

b) UV

!

\ L

!

(A) 6= ; ) UV

!

� L

!

(A)

2. For every � 2 �

!

there exist �

A

{lasses U; V suh that � 2 UV

!

.

First, we show that this implies that L

!

(A) is !{regular.

1. and 2. of the proposition imply that

� L

!

(A) =

[

U;V�

A

{lasses

UV

!

� L

!

(A)

UV

!

� L

!

(A) =

[

U;V�

A

{lasses

UV

!

� L

!

(A)

UV

!

The non{trivial part is the inlusion \�", whih needs both 2. and 1.

Sine the �

A

{lasses U; V are regular, this shows that L

!

(A) is !{regular.

We ould prove the proposition in an ad ho manner, but it is more elegant

to use a nie ombinatorial result: Ramsey's theorem.

De�nition 4.20 For a set M , we denote by [M ℄

2

the set of all 2{element

subsets of M . Let [M ℄

2

= A

1

[ A

2

[ � � � [ A

n

be a partition of [M ℄

2

into n

disjoint lasses. The set X � M is alled homogeneous for this partition if

there is an i; 1 � i � n, suh that [X℄

2

� A

i

.

Example: [N℄

2

= A [ B where

A = ffi; jg j i 6= j and i � j mod 2g

B = ffi; jg j i 6= j and i 6� j mod 2g

G = fi 2 N j i is eveng

U = fj 2 N j j is oddg

are both homogeneous sine

[G℄

2

� A and [U ℄

2

� A
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Proposition 4.21 [Ramsey℄ Let [N℄

2

= A

1

[ A

2

[ � � � [ A

n

be a partition

of [N℄

2

. Then there is an in�nite set X � N that is homogeneous for this

partition.

Proof: see J.G.Rosenstein: Linear Orderings, Aademi Press, 1982, p. 111,112.

Proof of Prop. 4.19

2. Let � 2 �

!

. Together with �

A

, � de�nes a partition of [N℄

2

.

Let U

1

; U

2

; : : : ; U

n

be the (�nitely many) �

A

{lasses.

A

�

= ffi; jg j i < j and �(i+ 1; j) 2 U

�

g:

Sine every word �(i+1; j) belongs to one of the �

A

{lasses and sine

the �

A

{lasses are disjoint, [N℄

2

= A

1

_

[A

2

_

[ � � �

_

[A

n

is a partition.

By Ramsey, there is an in�nite X � N that is homogeneous for this

partition, i.e. there is a k; 1 � k � n suh that for all i; j 2 X with

i < j we have �(i+ 1; j) 2 U

k

.

Sine X is in�nite, there is an in�nite sequene i

1

; i

2

; i

3

; : : : in X suh

that i

j

+ 1 < i

j+1

. Then we know that �(i

j

+ 1; i

j+1

) 2 U

k

n f�g. Let

U be the �

A

{lass of �(0; i

1

). Then we have

� = �(0; i

1

)�(i

1

+ 1; i

2

)�(i

2

+ 1; i

3

) : : : 2 U � U

!

k

:

1. Let � 2 UV

!

\ L

!

(A). This means

i) � = uv

1

v

2

v

3

� � � where u 2 U and v

i

2 V n f�g.

ii) There is a suessful path

I 3 q

0

u

�!

A

q

1

v

1

�!

A

q

2

v

2

�!

A

q

3

v

3

�!

A

� � �

with label � = uv

1

v

2

v

3

� � �

Sine this path is suessful we reah in�nitely often a �nal state. Thus

there are in�nitely many i � 1 suh that q

i

v

i

�!

A

F

q

i+1

.

Let � 2 UV

!

be arbitrary. Then � is of the form � = u

0

v

0

1

v

0

2

v

0

3

� � � with

u

0

2 U and v

0

i

2 V n f"g.
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Sine U and V are �

A

{lasses, we know that u �

A

u

0

and v

i

�

A

v

i

0

.

Thus there is a path of the form q

0

u

0

�!

A

q

1

v

0

1

�!

A

q

2

v

0

2

�!

A

q

3

v

0

3

�!

A

� � �

with label � = uv

0

1

v

0

2

v

0

3

� � � inA suh that there are in�nitely many i � 1

with q

i

v

0

i

�!

A

F

q

i+1

. This shows that � 2 L

!

(A).

This shows a) of 1. Part b) of 1. is an immediate onsequene: assume

that � 2 UV

!

\L

!

(A), but there is � 2 UV

!

\L

!

(A). Now a) implies

� 2 L

!

(A) .

Corollary 4.22 For every B�uhi{automaton A we an e�etively onstrut

a B�uhi{automaton B suh that L

!

(B) = L

!

(A).

Proof:

1. The �

A

{lasses (to be more preise: �nite automata aepting them)

an e�etively be onstruted: Lemma 4.18 shows how they an be

obtained from the languages L

p;q

and L

F

p;q

.

2. For a given pair U; V of �

A

{lasses we an deide whether UV

!

\

L

!

(A) 6= ;. In fat, the emptiness problem for !{regular languages is

deidable (Prop 4.10).

3. For �nite unions of the language UV

!

we an e�etively onstrut a

B�uhi{automaton.

Corollary 4.23 The equivalene problem for !{regular languages is deid-

able.

Proof:

L

!

(A

1

) = L

!

(A

2

) i�

(L

!

(A

1

) n L

!

(A

2

)) [ (L

!

(A

2

) n L

!

(A

1

))

| {z }

for this we an onstrut a B�uhi{automaton.

= ;

The emptiness problem for B�uhi{automaton is deidable (Prop. 4.10).
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4.3 Muller{automata

We know that deterministi B�uhi{automaton are weaker than non{deterministi

ones. Can we get an automata model where the deterministi automata are

as powerful as non{deterministi B�uhi{automata?

De�nition 4.24 [Muller{automata℄ A Muller{automaton is of the form

A = (Q;�; I;�;F) where

� Q;�; I;� is as for B�uhi{automata.

� F � 2

Q

is a set of sets of �nal states.

The in�nite path p

0

a

0

�!

A

p

1

a

0

�!

A

p

2

a

2

�!

A

� � � is suessful i�

� p

0

2 I

� fp 2 Q j there are in�nitely many i with p = p

i

g 2 F .

L

!

(A) = f� 2 �

!

j � is the label of a suessful path in Ag.

Example 4.25 L = (a [ b)

�

b

!

.

In Example 4.11 we have shown that L annot be aepted by a deterministi

B�uhi{automaton. The following is a deterministi Muller{automaton for L:

1 2

a

b

a

b

F = ff2gg

If the set of states reahed in�nitely often is f2g then

1

is reahed only a

�nite number of times. Thus, we have only �nitely may a's.

Note: onsidered as a B�uhi{automaton with F = f2g, this automaton also

aepts words not in L, like (ab)

!

.
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�

UCHI{AUTOMATA

Proposition 4.26 For an !{regular{language L the following are equiva-

lent:

1. L is !{regular.

2. L is aepted by a deterministi Muller{automaton.

Proof:

\2! 1" is simple. Let A = (Q;�; q

0

; Æ;F) be a deterministi Muller{

automaton. Then we have:

L

!

(A) =

[

F 2 F

0

�

\

q 2 F

limL

q

0

;q

| {z }

q is reahed in�nitely often

\

\

q 2 QnF

limL

q

0

;q

1

A

limL

q

0

;q

ontains exatly those words that label paths in A on whih q

is reahed in�nitely often. This is only true sine A is deterministi.

We know that the languages limL

q

0

;q

are !{regular (Prop. 4.13). The

!{regular languages are losed under [;\;

�

.

\1! 2" is as hard as showing omplementation for B�uhi{automata. Rea-

son: it is easy to show that the lass of languages aepted by deter-

ministi Muller{automata is losed under omplement. We don't give

the the proof for \1! 2" here.

Proposition 4.27 If L � �

!

is aepted by a deterministi Muller{automaton,

then so is L.

Proof: Let L = L

!

(A) for a deterministi Muller{automaton A = (Q;�; q

0

;

Æ;F). It is easy to see that B = (Q;�; q

0

; Æ; 2

Q

n F) aepts L.
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Chapter 5

In�nite words and logial

formulae

5.1 S1S logi and !{regular languages

Goal: desribe a set of formulae that an exatly de�ne the !{regular lan-

guages.

Just as in the ase of �nite words, �rst{order prediate logi is not enough

to get all !{regular languages.

De�nition 5.1 Formulae of monadi seond{order logi of one suessor

(S1S) are built using:

� n unary prediate symbols P

1

; P

2

; : : : ; P

n

,

� a unary funtion symbol s,

� a onstant symbol 0,

� a binary prediate symbol =,

� a binary prediate symbol <,

� Boolean operations ^;_;:,
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� �rst{order quanti�ers 9x; 8x ranging over elements of the domain

� seond{order quanti�ers 9X; 8X ranging over subsets of the domain

As interpretation domain we take the natural numbers !, where we interpret

� 0 as 0

� s as the suessor funtion: n 7! n+ 1

� = as equality

� < as the usual ordering on !

As in the �nite ase we take as alphabet � = f0; 1g

n

.

An interpretation P

I

1

; P

I

2

; : : : ; P

I

n

of the unary prediate symbols orresponds

to an !{word

� = �(0)�(1)�(2) � � � 2 �

!

where

�(m) = (b

m

1

; : : : ; b

m

n

) with b

m

i

=

�

1 if m 2 P

I

i

0 if m 62 P

I

i

For a losed S1S{formuale ' and � 2 �

!

we write � j= ' to say that the

interpretation orresponding to � makes ' true. The !{language aepted

by ' is de�ned as

L

!

(') = f� 2 �

!

j � j= 'g:

Example 5.2 Let n = 1, i.e. � = f0; 1g.

1. ' = P

1

(0) ^ (8x P

1

(x)) :P

1

(s(x))) ^ (8x :P

1

(x)) P

1

(s(x)))

L

!

(') = f10101010 � � � g = (10)

!

2. L

1

= f� 2 �

!

j after every 1 in � there eventually is 0g

For the formula '

1

= 8x (P

1

(x) ) 9y x < y ^ :P

1

(y)) we have

L

!

('

1

) = L

1

.
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3. L

2

= f� 2 �

!

j between two onseutive 1s there is an even number of

0sg

'

2

= 8x 8y (x < y ^ P

1

(x) ^ P

1

(y) ^ 8z (x < z ^ z < y ) :P

1

(z)))

) 9X 9Y 8z ((x < z ^ z � y))

(:(X(z) ^ Y (z))^

(X(z)) Y (s(z))) ^ (Y (z)) X(s(z)))^

X(s(x)) ^X(y))):

As in the �nite ase, we use Q

a

(x) as an abbreviation for the formula that

says that a 2 � is at position x.

Next we show that we an dispense with the symbols 0 and < without losing

expressive power.

Lemma 5.3 Both 0 and < an be expressed in S1S using the other symbols.

Proof:

� x = 0 is equivalent to :9y (y < x)

� x < y is equivalent to 9X (:X(x) ^X(y) ^ 8z (X(z)) X(s(z)))):

Proposition 5.4 For an !{language L � �

!

the following are equivalent:

1. L is !{regular.

2. L = L

!

(') for a losed S1S{formula '.

Proof:

\1! 2" Let A = (Q;�; I;�; F ) be a B�uhi{automaton suh that L =

L

!

(A). We express the existene of a suessful path with the help

of an S1S{formula. Let Q = fq

0

; : : : ; q

m

g be the states of A. For
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eah state q

i

we introdue a seond{order variable Y

i

with the intended

meaning:

Y

i

(x)b= at position x in the path we have state q

i

9Y

0

� � � 9Y

m

�

8x

^

0�i<j�m

:(Y

i

(x) ^ Y

j

(x))

�

^ the sets are disjoint

_

q

i

2I

Y

i

(0) ^ the path starts with an

initial state

8x

_

(q

i

;a;q

j

)2�

Y

i

(x)^Q

a

(x)

^Y

j

(s(x)) ^

the transition from q

i

at

x with a to q

j

at s(x)

must be admissible in �

_

q

i

2F

8x 9y (x < y ^ Y

i

(y)) one of the �nal states is

reahed in�nitely often

By onstrution, a word � 2 �

!

satis�es this formula i� there is a

suessful path in A with label �.

\2! 1" First, we transform S1S{formulae into an appropriate normal form:

1. These formulae ontain only seond{order varibales (no �rst{order

varibales)

2. Atomi formulae are of the following form:

� X

i

� X

j

(with the semantis 8x X

i

(x)) X

j

(x))

� Su(X

i

) = X

j

(with the semantis that X

i

and X

j

are sin-

gleton sets fn

i

g and fn

j

g suh that n

j

= n

i

+ 1)

Formulae that are built from these atomi formulae using Boolean op-

erations and seond{order quanti�ers are alled S1S

0

{formulae.

Claim: Every S1S{formula an be transformed into an equivalent

S1S

0

{formula.

Proof of the laim:

i) We have already seen that 0 and > an be eliminated.
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ii) Nested appliations of s an be eliminated:

x = s(s(� � � s

| {z }

m>1

(y) � � � ))

is equivalent to

9y

1

: : :9y

m�1

(x = s(y

1

) ^ y

1

= s(y

2

) ^ : : : ^ y

m�1

= s(y)):

iii) Thus we may assume that all atomi formulae are of the form:

x = y; s(x) = y; P

i

(x); X(x)

In the �nal step, we use the following abbreviations:

� X = Y for \X � Y ^ Y � X"

� X 6= Y for \:(X = Y )"

� Singleton(X) =

\9Y (Y � X ^ Y 6= X ^ 8Z (Z � X ) (Z = X _ Z = Y )))"

X has exatly one strit subset, whih is the ase i� X is a

singleton set.

iv) First{order varibales an be eliminated as illustrated by the fol-

lowing example:

8x 9y s(x) = y ^ Z(y)

is transformed into

8X Singleton(X)) 9Y (Singleton(Y ) ^ Su(X) = Y ^ Y � Z):

Claim

We show by indution on the struture of S1S

0

{formulae that they

de�ne !{regular languages. We also onsider S1S

0

{formulae with free

seond{order variables. When de�ning languages these free varibales

are treated like unary prediate symbols: e.g. 9Y (X � Y ^ P

1

� Y )

yields an !{language over � = f0; 1g

2

sine P

1

and X our free.

Indution base: atomi formulae of the form X � Y and Su(X) =

Y yield !{languages over � = f0; 1g

2

(we assume that the �rst om-

ponent stands for X and the seond for Y ).

L

!

(X � Y ) = f� = �

0

�

1

�

2

� � � j where �

i

= (b

i

1

; b

i

2

) we have

b

i

1

= 1) b

i

2

= 1g
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Thus, L

!

(X � Y ) is aepted by

1

(0; 0); (0; 1); (1; 1)

L

!

(Su(X) = Y ) = f� = �

0

�

1

�

2

� � � j where �

i

= (b

i

1

; b

i

2

) we have that

there exists a k suh that

� b

k

1

= 1 ^ b

(k+1)

2

= 1

� b

j

1

= 0 for j 6= k

� b

j

2

= 0 for j 6= k + 1g:

Thus, L

!

(Su(X) = Y ) is aepted by

1 2 3

(0; 0) (0; 0)

(1; 0) (0; 1)

Indution step: It is suÆient to onsider :;_; 9X.

i) L

!

(:') = �

!

n L

!

('). By indution, we know that L

!

(') is

!{regular, and thus �

!

n L

!

(') is also !{regular (Main Theo-

rem 4.15).

ii) in priniple, _ orresponds to union. However, if ' = '

1

_ '

2

,

then '

1

and '

2

may be based on di�erent prediates/seond{order

varibales.

Example:

'(X

1

; X

2

; X

3

| {z }

free variables

or unary pred-

iates

) = '

1

(X

1

; X

2

) _ '

2

(X

2

; X

3

)

Both '

1

and '

2

de�ne a language over � = f0; 1g

2

, but the �rst

omponent for '

1

orresponds to X

1

whereas the �rst omponent

for '

2

orresponds to X

2

.

80 Marh 3, 2005



5.1. S1S LOGIC AND !{REGULAR LANGUAGES

We extend '

1

and '

2

by the missing variables, e.g. '̂

1

= '

1

^X

3

�

X

3

and '̂

2

= '

2

^X

1

� X

1

.

If A

1

is a B�uhi{automaton for '

1

, then we obtain a B�uhi{

automaton for '

1

as follows:

^

A

1

has a transition q

(b

1

;b

2

;b

3

)

���! q

0

i� q

(b

1

;b

2

)

���! q

0

in A

1

.

L

!

(') = L

!

('

1

_ '

2

)

= L

!

('̂

1

_ '̂

2

)

= L

!

('̂

1

) [ L

!

('̂

2

)

= L

!

(

^

A

1

) [ L

!

(

^

A

2

)

| {z }

!��regular

iii) '(X

1

; : : : ; X

n

) = 9Y  (Y;X

1

; : : : ; X

n

):

If A is a B�uhi{automaton aepting L

!

( (Y;X

1

; : : : ; X

n

)), then

we obtain a B�uhi{automaton for L

!

(9Y  (Y;X

1

; : : : ; X

n

)) by re-

plaing every transition q

(b

0

;b

1

; :::; b

n

)

���! q

0

by q

(b

1

; :::; b

n

)

���! q

0

Example 5.5 (illustrates \2! 1")

' = 9Y (X � Y _ Su(Y ) = Z)

A

1

:

1

(0; 0); (0; 1); (1; 1)

is an automaton for X � Y ;

adding a omponent for Z:

^

A

1

:

1

(0; 0; 0); (0; 1; 0); (1; 1; 0)

(0; 0; 1); (0; 1; 1); (1; 1; 1)
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A

2

:

1 2 3

(0; 0) (0; 0)

(1; 0) (0; 1)

is an automaton for Su(Y ) = Z;

adding a omponent for X:

^

A

2

:

1 2 3

(0; 1; 0) (0; 0; 1)

(1; 0; 1)

(0; 0; 0)

(1; 0; 0)

(0; 0; 0)

(1; 0; 0)

(1; 1; 0)

^

A

1

_

[

^

A

2

is an automaton for X � Y _ Su(Y ) = Z. The automaton A for

' thus looks as follows:

(0; 0)

(1; 0)

(0; 0)

(1; 0)

1 2 31

(0; 0)

(1; 0)

(0; 1)

(1; 1)

(0; 0); (1; 0)

(0; 1); (1; 1)

1'

The proof of the proposition shows that for every S1S{formula ' we an

e�etively onstrut a B�uhi{automaton A suh that L

!

(') = L

!

(A).

Corollary 5.6 Validity in S1S is deidable.

Proof: If ' is a (losed) S1S{formula, then ' is valid i� :' does not have

a model, i.e., L

!

(:') = ;. We an e�etively onstrut a B�uhi{automaton
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A with L

!

(:') = L

!

(A) and the emptiness problem for B�uhi{automata is

deidable.

The proof of Prop 5.4 an be modi�ed suh that it works for �nite words.

Corollary 5.7 For a language L � �

�

the following are equivalent

1. L is regular.

2. L n f"g = L(') for a losed S1S{formula '.

As introdued in Chapter 1.3, �nite words orrespond to �nite interpreta-

tions. In the proof of \1 ! 2" we have to take the di�erent aeptane

ondition into aount:

\

_

q

i

2F

8x 9y x < y ^ Y

i

(y)"

is replaed by

\

_

q

i

2F

8x Max(x)

| {z }

abbrev. of s(x) = x

) Y

i

(x)"

In the proof of \2! 1" we use the losure properties of regular languages.

Corollary 5.8 For a losed S1S{formula ' it is deidable whether ' holds

for all �nite models.

Note: there are formulae that hold in all �nite interpretations, but not in

in�nite ones.

Example:

9y8x (x � y)

De�nition 5.9 The !{language L � �

!

is alled star{free i� L =

S

n

i=1

U

i

V

!

i

where U

i

; V

i

� �

�

are star{free.

Proposition 5.10 For an !{language L � �

!

the following are equivalent

1. L is star{free.

2. L = L

!

(') for a losed formula of S1S not ontaining seond{order

quanti�ers.
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Chapter 6

Automata on �nite trees

We onsider trees where the number of suessor nodes is determined by the

arity of the node label.

6.1 Finite trees

Example 6.1 � = f+; �;�; x; yg where +; � have arity 2, � has arity 1, and

x; y have arity 0.

x

01

yx

00

t =

�

1

10

0

"

+

�

is a �{labelled tree. The nodes an

uniquely be addressed using words

over the alphabet f0; 1g. Thus, the

tree t an be viewed as a partial

funtion

t : f0; 1g

�

! �

with domain dom(t) = f"; 0; 1; 00;

01; 10g; e.g. t(0) = �, t(10) = x.
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De�nition 6.2 Let � be an alphabet and � : �! ! a funtion that assigns

with every a 2 � an arity �(a) (alphabet with arity funtion). For n 2 ! let

�

n

= fa 2 � j �(a) = ng. A �{tree is a partitial funtion t : !

�

! � whose

domain dom(t) satis�es the following:

1. " 2 dom(t),

2. For all u 2 !

�

and i 2 ! we have

ui 2 dom(t) i� u 2 dom(t) and i < �(t(u)):

1) means that every tree has a root.

2) says that every node 6= " has a predeessor node and that every node has

the right number of suessors.

A leaf of t is a node u 2 dom(t) suh that �(t(u)) = 0, i.e. u does not have

suessor nodes. The tree t is �nite if dom(t) is �nite. By T

�

we denote the

set of all �nite trees over �. Let � be the pre�x relation on !

�

, i.e.

u � v i� 9u

0

2 !

+

with uu

0

= v:

Beause of 2 in Def. 6.2, the set dom(t) for a tree t is losed under building

pre�x, i.e. v 2 dom(t) and u � v ) u 2 dom(t).

De�nition 6.3

1. A path through t is a maximal and totally ordered subset of dom(t).

In Example 6.1, f"; 0; 00g; f"; 0; 01g, and f"; 1; 10g are all the paths.

f"; 00g is not maximal and f"; 0; 00; 01g is not totally ordered.

2. The subtree of t at position u 2 dom(t) is the tree t

u

with

� dom(t

u

) = fv j uv 2 dom(t)g

� t

u

(v) = t(uv).

For example, t

0

=

0

x

1

y

0

"

x

-

t

1

=

�

"
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6.2 Automata on �nite trees

A word w 2 �

�

an be viewed as a �nite tree over an

alphabet

b

� = � [ fxg where �(a) = 1 for all a 2 �

and �(x) = 0. E.g. abb an be viewed as the tree:

A path with label abb of a �nite automaton orre-

sponds to a labelling of the nodes of the tree with

states of the automaton:

b

q

0

q

1

a

"

q

1

q

1

q

0

b

b

a

x

q

1

0

00

000

This an be generalized to trees with branhing fator > 1.

De�nition 6.4 An LR{tree automaton (leaf to root) A = (Q;�; I;�; F )

onsists of:

� a �nite set of states Q

� a �nite alphabet � with arity funtion

� an initial assignment I : �

0

! 2

Q

� a transition assignment �, whih assigns to every a 2 � of arity n > 0

a funtion �

a

: Q

n

! 2

Q

� a set of �nal states F

A run of this automaton on the tree t 2 T

�

is a mapping ` : dom(t) ! Q

suh that

`(u) 2 �

a

(`(u0); : : : ; `(u(n� 1)))

where a = t(u) has arity n.
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The ` run is suessful i�

� `(u) 2 I(t(u)) for all leafs u,

� `(") 2 F .

The tree language aepted by A is

L(A) = ft 2 T

�

j there is a suessful run of A on tg:

A is deterministi i�

� jI(a)j = 1 for all a 2 �

0

� j�

a

(q

1

; q

2

; : : : ; q

n

)j = 1 for all n > 0; a 2 �

n

and q

1

; q

2

; : : : ; q

n

2 Q

In this ase we write I as a funtion I : �

0

! Q and �

a

as a funtion

�

a

: Q

n

! Q

Example 6.5 � = �

0

[ �

1

[ �

2

where �

0

= fx; yg;�

1

= f�g;�

2

= f+; �g

A = (Q;�; I;�; F ) where

� Q = f0; 1; 2g,

� I(x) = 1; I(y) = 2,

� �

�

(q) = �q mod 3;

�

+

(q

1

; q

2

) = q

1

+ q

2

mod 3;

�

�

(q

1

; q

2

) = q

1

� q

2

mod 3;

� F = f1g.

x

�

t =

1

2

1 2 1

2 �

y x

+

The automaton evaluates arithmeti

expressions with x = 1 and y = 2 mod-

ulo 3, and aepts if the value is 1.
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Just as in the ase of words, non{det. automata an be transformed into

deterministi ones using the powerset onstrution.

Proposition 6.6 For a tree language L � T

�

the following are equivalent:

1. L is aepted by a non{deterministi LR{tree automaton

2. L is aepted by a deterministi LR{tree automaton

(Exerise)

Instead of working from the leafs to the root, we an also work in the other

diretion:

De�nition 6.7 An RL{tree automaton A = (Q;�; I;�; F ) onsists of

� a �nite set of states Q

� an alphabet with arity funtion �

� a set I � Q of initial states

� a transition assignment � that assigns to eah a 2 �

n

for n > 0 a

funtion �

a

: Q! 2

Q

n

� a �nal assignment F : �

0

! 2

Q

.

A run of A on t 2 T

�

is a mapping ` : dom(t)! Q suh that

(`(u0); : : : ; `(u(n� 1))) 2 �

a

(`(u)) where a = t(u) has arity n:

This run is suessful i�

� `(") 2 I,

� `(u) 2 F (t(u)) for all leafs u.
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L(A) = ft 2 T

�

j there is a suessful run of A on tg:

A is deterministi i�

� jIj = 1

� j�

a

(q)j = 1 for all n > 0; a 2 �

n

, and q 2 Q

Proposition 6.8 For a tree language L � T

�

the following are equivalent:

1. L is aepted by an LR{tree automaton.

2. L is aepted by an RL{tree automaton

Proof:

\1) 2" Let A = (Q;�; I;�; F ) be an LR tree{automaton. We onsider the

RL tree{automaton B = (Q;�; F;�

0

; I) where

�

0

a

: q 7! f(q

1

; : : : ; q

n

) j q 2 �

a

(q

1

; : : : ; q

n

)g

It is easy to see that any suessful run of A on a tree t is also a

suessful run of B on this tree and vie versa.

\2) 1" an be shown aordingly.

Example 6.9 Let A be the LR{tree automaton of Example 6.5. The or-

responding RL{tree automaton B = (Q;�; I

0

;�

0

; F

0

) is de�ned as follows

� Q = f0; 1; 2g

� � = fx; y;�;+; �g,

� I

0

= f1g

� �

�

(q) = fq

0

2 Q j �

�

(q

0

) = qg

= fq

0

j �q

0

mod 3 = qg = fq

0

2 Q j q

0

= �q mod 3g
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� �

+

(q) = f(q

0

; q

00

) j q = q

0

+ q

00

mod 3g,

� �

�

(q) = f(q

0

; q

00

) j q = q

0

� q

00

mod 3g,

� F

0

(x) = 1 and F

0

(y) = 2

Note: Although the LR{tree automaton A is deterministi, the orrespond-

ing RL{tree automaton is not deterministi:

e.g. �

+

(1) = f(0; 1); (1; 0); (2; 2)g

We will show that deterministi RL{tree automata are weaker than non{

deterministi ones.

Example 6.10 Not every language aepted by a non{deterministi RL{

tree automaton an also be aepted by a deterministi RL{tree automaton.

� = fx; y

arity 0

; f

arity 2

g;

L = f

f

xyy

x

,

f

g

� The following non{deterministi RL{tree automaton aepts L:

A = (fq

0

; q

1

; q

x

; q

y

g;�; fq

0

; q

1

g

non{det.

;�; F )

where

�

f

(q

0

) = f(q

x

; q

y

)g

�

f

(q

1

) = f(q

y

; q

x

)g

�

f

(q

x

) = �

f

(q

y

) = ;

F (x) = fq

x

g;

F (y) = fq

y

g:

� Assume that B = (Q

0

;�; fig;�

0

; F

0

) is a deterministi RL{tree automa-

ton for L. Let (q

0

; q

00

) = �

0

f

(i). Sine

i

q

0

q

00

x

f

y

2 L, we know that
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q

0

2 F (x). Sine

q

00

i

q

0

f

x
y

2 L, we know that q

00

2 F (x). But

then B also aepts

q

00

i

q

0

f

x
x

62 L:

Deterministi and non{deterministi LR{tree automata as well as non{deterministi

RL{tree automata aept the same lass of tree languages. Deterministi

RL{tree automata aept a smaller lass.

De�nition 6.11 The tree language L � T

�

is alled reognizable i� it is

apeted by an LR{tree automaton.

Example 6.12 There are non{reognizable tree languages. To show this, we

onsider an alphabet � with arity funtion suh that j�

0

j > 0 and j�

2

j > 0.

Thus T

�

is in�nite.

For f 2 �

2

we de�ne L = ff(t; t) j t 2 T

�

g and show that L is not reogniz-

able.

Assume that L is reognizable. Let A = (Q;�; I;�; F ) be a deterministi

LR{tree automaton for L. For every tree t 2 T

�

we onsider the run ` on t

that labels eah leaf u with `(u) = I(t(u)). Let q

t

= `("). Sine Q is �nite

and T

�

is in�nite, there are trees t 6= t

0

suh that q

t

= q

t

0

. Consider the run

of A on the following trees:

�

f

(q

t

; q

t

) f

t t

q

t

q

t

�

f

(q

t

; q

t

0

) f

t

q

t

t

0

q

t

0

(a) (b)

Sine the tree in (a) belongs to L we have that �

f

(q

t

; q

t

) 2 F . But then the

automaton A aepts also the tree in (b), whih does not belong to L.
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CHAPTER 6. AUTOMATA ON FINITE TREES

6.3 Regular tree languages

Reognizable languages of �nite words an be desribed using regular ex-

pressions. A similar haraterization an be shown for reognizable tree lan-

guages. To this purpose we must introdue appropriate operations on tree

languages.

Reall:

� ; 2 Reg

�

, fag 2 Reg

�

for all a 2 �

� L

1

; L

2

2 Reg

�

) L

1

[ L

2

; L

1

� L

2

; L

1

�

2 Reg

�

Proposition 6.13

1. The empty tree language is reognizable

2. For every a 2 �

0

the language f

a

g is reognizable.

Proof:

1. Use an LR{tree automaton with F = ;.

2. LR{tree automaton where:

� Q = f0; 1g

� I(a) = 1, I(b) = 0 for all b 2 �

0

n fag

� �

f

(q

1

; : : : ; q

n

) = ; for all (q

1

; : : : q

n

) 2 Q

n

; f 2 �

n

; n > 0

� F = f1g

Proposition 6.14 The lass of reognizable tree languages is losed under

union, intersetion, and omplement.

Proof: similar to the ase of words

1. Union: take the union of the automata (Exerise).

2. Complement: use deterministi LR{tree automata and exhange �nal

states with non{�nal states.
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Next, we de�ne onatenation of tree languages.

Notation: a tree

: : :

t

1

t

n

f

is written as f(t

1

; : : : ; t

n

).

De�nition 6.15 Let � be an alphabet with arity funtion and let x =

(x

1

; : : : ; x

k

) be a k{tuple of elements of �

0

.

1. For t 2 T

�

and L

1

; : : : ; L

k

� T

�

we de�ne t �

x

(L

1

; : : : ; L

k

) � T

�

by

indution:

� t 2 �

0

: t =

x

i

: t �

x

(L

1

; : : : ; L

k

) := L

i

t 6=

x

i

for all i : t �

x

(L

1

; : : : ; L

k

) := ftg

� t = f(t

1

; : : : ; t

n

) :

t �

x

(L

1

; : : : ; L

k

) := ff(t

0

1

; : : : ; t

0

n

) j t

0

i

2 t

i

�

x

(L

1

; : : : ; L

k

)g

2. For L; L

1

; : : : ; L

k

� T

�

we de�ne

L �

x

(L

1

; : : : ; L

k

) :=

[

t2L

t �

x

(L

1

; : : : ; L

k

)

A tree in L �

x

(L

1

; : : : ; L

k

) is obtained from a tree t 2 L by replaing eah

leaf with label

x

i

by some tree in L

i

.

Example:

f f

2 �

2

(x; x)g �

x

fa; b

2 �

0

g = ff(a; a); f(a; b); f(b; a); f(b; b)g:

Note: di�erent ourrenes if x

i

may be replaed by di�erent elements of

L

i

. In partiular:

ff(x; x)g �

x

T

�

= ff(t; t

0

) j t; t

0

2 T

�

g

6= ff(t; t) j t 2 T

�

g:

Proposition 6.16 If L; L

1

; L

2

; : : : ; L

k

are reognizable tree languages, then

so L �

x

(L

1

; : : : ; L

k

).
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Proof: Given an RL{tree automaton for L; L

1

; : : : ; L

k

we onstrut an RL{

tree automaton for the onatenation.

Idea:
x

2

t

q

1

q

2

i 2 I

t

1

t

2

x

1

q

1

2 F (x

1

)

q

2

2 F (x

2

)

here we ontinue

with the automata

for L

1

and for L

2

LetA = (Q;�; I;�; F ) be an RL{tree automaton for L andA

i

= (Q

(i)

;�; I

(i)

;

�

(i)

; F

(i)

) be an RL{tree automaton for L

i

(i = 1; : : : ; k). W.l.o.g. the sets

of states are disjoint. The following automaton

B = (Q [Q

(1)

[ : : : [Q

(k)

;�; I;�

0

; F

0

)

is an RL{tree automaton for the onatenation.

� for a 2 �

n

with n > 0:

{ for q 2 Q

(j)

: �

0

a

(q) = �

(j)

a

(q)

{ for q 2 Q : �

0

a

(q) = �

a

(q) [

[

j with

q 2 F (x

j

)

f�

(j)

a

(i) j i 2 I

(j)

g

� for a 2 �

0

:

{ for a 62 fx

1

; : : : ; x

k

g:

F

0

(a) = F (a) [ F

(1)

(a) [ F

(2)

(a) [ : : : [ F

(k)

(a) [

fq 2 Q j q 2 F (x

j

) for some j; 1 � j � k and

F

(j)

(a) \ I

(j)

6= ;

| {z }

a

2 L

j

g

{ for a 2 fx

1

; : : : ; x

k

g:

F

0

(a) = F

(1)

(a) [ F

(2)

(a) [ : : : [ F

(k)

(a) [

fq 2 Q j q 2 F (x

j

) for some j; 1 � j � k and

F

(j)

(a) \ I

(j)

6= ;g
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When de�ning regular languages, we will onsider two speial ases of the

general onatenation introdued in De�nition 6.15:

1. Applying an f 2 �

k

, k > 0, to tree languages L

1

; : : : ; L

k

:

f(L

1

; : : : ; L

k

) := f(x

1

; : : : ; x

k

) �

(x

1

;:::;x

k

)

(L

1

; : : : ; L

k

)

2. x = x, i.e. tuple of length 1 : L �

x

L

0

.

The Kleene{Star an also be generalized to tree languages:

De�nition 6.17 Let L � T

�

and x 2 �

0

. We de�ne :

� L

0;x

= fxg

� L

n+1;x

= L

n;x

[ L �

x

L

n;x

� L

�;x

=

S

n�0

L

n;x

Proposition 6.18 If L is a reognizable tree language, then so is L

�;x

.

Proof: Let A = (Q;�; I;�; F ) be an RL{tree automaton for L.

Idea:

x

i 2 I

t

00

q

3

q

4

t

0

q

2

x

q

1

t

x

x

If q

i

2 F (x), then we an either

stop or ontinue with an initial

state.

We de�ne B = (Q [ f̂�g;�; I

0

;�

0

; F

0

) where f̂�g 62 Q and
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� for a 2 �

n

with n > 0:

�

0

a

(q) = �

a

(q) [

(

; q 62 F (x)

S

i 2 I

�

a

(i) q 2 F (x)

�

0

a

(̂�) = ;

� for all a 2 �

0

{ a 6= x:

F

0

(a) = F (a) [ fq 2 Q j q 2 F (x) and F (a) \ I

| {z }

a

2 L

6= ;g

{ for a = x:

F

0

(x) = F (x) [ f̂�g

� I

0

= I [ f̂�g

Note: the state �̂ in F

0

(x) and I

0

ensures that

x

is aepted.

De�nition 6.19 Let � be an alphabet with arity funtion, Z a set of sym-

bols of arity 0 with � \ Z = ;, and de�ne

b

� := � [ Z. Reg(T

�

; Z) is the

smallest lass of tree languages over

b

� suh that

1. ; 2 Reg(T

�

; Z),

2. fxg 2 Reg(T

�

; Z) for all x 2 �

0

[ Z,

3. L

1

; L

2

2 Reg(T

�

; Z)) L

1

[ L

2

2 Reg(T

�

; Z),

4. L

1

; L

2

2 Reg(T

�

; Z) and z 2 Z ) L

1

�

z

L

2

2 Reg(T

�

; Z),

5. L 2 Reg(T

�

; Z) and z 2 Z ) L

�;z

2 Reg(T

�

; Z),

6. n > 0; f 2 �

n

; L

1

; : : : ; L

n

2 Reg(T

�

; Z)) f(L

1

; : : : L

n

) 2 Reg(T

�

; Z).

The language L � T

�

is regular i� there is a set of auxiliary symbols Z of

arity 0 suh that L 2 Reg(T

�

; Z).
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Proposition 6.20 For L � T

�

the following are equivalent:

1. L is regular

2. L is reognizable

Proof:

\1) 2" Follows from what we have shown.

\2) 1" Let A = (Q;�; I;�; F ) be an RL{tree automaton with L = L(A).

W.l.o.g. Q is of the form f1; : : : ; kg and Q \� = ;. We de�ne Z := Q

(where q 2 Q is assumed to be of arity 0). Let A

0

= (Q;�[Z; I;�; F

0

)

where F

0

(q) = fqg. Thus, subtrees an be replaed by a leaf q if the

orresponding node in the run gets label q.

For K � Q; 0 � h � k and i 2 Q let L(K; h; i) be the set of all trees

t 2 T

�[K

suh that there is a run ` of A

0

on t with

� `(�) = i

� `(u) � h for all u 6= " that are not leafs

� `(u) 2 F

0

(t(u)) for all leafs u

L(K; h; i) onsists of the trees that may have additional leafs labelled

with elements of K. A run of A

0

on this tree that begins with i must

stop with a state in F

0

(t(u)) for eah leaf u (in partiular, if t(u) = q

then `(u) = q) and the intermediate states must be � h. Obviously,

the following holds:

L(A) =

[

i2I

L(;; k; i)

Thus, it is suÆient to show that all the languages L(K; h; i) belong to

Reg(T

�

; Z)

Indution base h = 0: In this ase, L(K; 0; i) annot ontain trees

having a node that is neither the root nor a leaf (sine a run

must label suh an intermediate node with a state q > 0). Thus,

L(k; 0; i) is �nite. It is easy to see that �nite sets of trees are

regular.
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Indution step h > 0: we have the following:

L(K; h+ 1; i) = L(K; h; i) [

L(K [ fh+ 1g; h; i) �

h+1

L(K [ fh+ 1g; h; h+ 1)

�;h+1

�

h+1

L(K; h; h+ 1)

By indution and the de�nition of Reg(T

�

; Z) this shows that

L(k; h+ 1; i) 2 Reg(T

�

; Z)

2 L(K [ fh + 1g; h; h+ 1)

� h

i 2 I

h+ 1

� h

h+ 1

� h

� h

.

.

.

h+ 1

.

.

.

h+ 1

2 L(K [ fh+ 1g; h; i)

2 L(K [ fh+ 1g; h; h+ 1)

2 L(K; h; h+ 1)

Another interesting losure property of reognizable tree languages is losure

under alphabet renaming: Let �

(1)

;�

(2)

be alphabets with arity funtions and

' : �

(1)

! �

(2)

a mapping, suh that '(�

(1)

n

) � �

(2)

n

for all n � 0. For a tree

t 2 T

�

(1)

we de�ne '(t) 2 �

(2)

as follows:

'(t) : dom(t)! �

(2)

'(t)(u) = '(t(u))

Proposition 6.21 If L � T

�

(1)

is reognizable, then so is '(L) = f'(t) j t 2

Lg � T

�

(2)

.
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Proof: Let A = (Q;�

(1)

; I;�; F ) be an LR{tree automaton for L. Then

A

0

= (Q;�

(2)

; I

0

;�

0

; F ) is an LR{tree automaton for '(L) where

� for a 2 �

(2)

0

:

I

0

(a) =

[

a

0

2 �

(1)

0

'(a

0

) = a

I(a

0

);

� for a 2 �

(2)

n

, n > 0:

�

0

a

(q

1

; : : : ; q

n

) =

[

a

0

2 �

(1)

n

'(a

0

) = a

�

a

0

(q

1

; : : : ; q

n

):

Proposition 6.22 For regular languages, the equivalene and emptiness

problem is deidable.

Proof: Sine the regular/reognizable tree languages are losed under Boolean

operations, the equivalene problem an be redued to the emptiness prob-

lem.

Emptiness problem: Let A = (Q;�; I;�; F ) be a deterministi LR{tree

automaton for the language L with jQj = k.

Claim: L(A) 6= ; i� there is a tree t of depth � k with t 2 L(A).

Sine � is �nite, there are only �nitely many trees t 2 T

�

of depth � k. For

eah of these trees we an e�etively test t 2 L(A).

Proof of the laim:

\(" is trivial.
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\)" Let t be a tree of minimal size with t 2

L(A). Assume that A has depth > k, i.e.

t ontains at least one path of length >

k. Let ` be a suessful run of A on t.

Sine we have only k states there are two

di�erent positions u; u

0

on the path suh

that q := `(u) = `(u

0

).

u

u

0

t

q

q

If we replae in t the subtree t

u

by t

u

0

, then

we get a smaller tree t

0

for whih A also

has a suessful run. This ontradits the

minimality of t.

q

t

0

Note: this yields an exponential algorithm for the emptiness problem. There

is a linear{time algorithm for the emptiness problem (Exerise).
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Chapter 7

Automata on in�nite trees

For the sake of simpliity, we restrit the attention to binary trees, i.e. � is

an alphabet with arity funtion suh that � = �

2

. All the results an easily

be extended to the general ase.

An in�nite tree over � is a mapping f0; 1g

�

! �. With T

!

�

we denote the

set of all in�nite trees over �. An in�nite tree over � is alled !{tree. An

!{tree language is a subset of T

!

�

.

!{tree languages an be obtained by in�nite iteration.

De�nition 7.1 Let Z = fz

1

; : : : ; z

k

g be a set of symbols of arity 0 and �

an alphabet of binary symbols. Let U; U

1

; : : : ; U

k

� T

� [ Z

be tree languages

over � [ Z. The !{tree language

U �

(z

1

;:::;z

k

)

(U

1

; : : : ; U

k

)

!;(z

1

;:::;z

k

)

onsists of all !{trees t 2 T

!

�

for whih there exists a sequene t

0

; t

1

; t

2

; : : : of

trees in T

!

�[Z

suh that

1. t

0

2 U

2. For all i � 0 : t

i+1

2 t

i

�

(z

1

;:::;z

k

)

(U

1

; : : : ; U

k

)

3. t is the limit of the sequene, i.e. for all u 2 f0; 1g

�

there is an m � 0

suh that
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� u 2 dom(t

m

) and t(u) 2 � (i.e. u is not a leaf of t

m

(u))

� t(u) = t

m

(u)

Example 7.2 Z = fz

1

; z

2

g; U = ff(z

1

; z

2

)g; U

1

= fg(z

1

; z

1

)g; U

2

= fh(z

2

; z

2

)g

f

gz

1

z

2
h

z

1

z

1

z

2

z

2

t

1

=t

0

=

ff

z

1

z

1

z

1

z

1

z

2

z

2

z

2

z

2

g g

hh

g

h

t

2

=

There is only one possible sequene, whose limit is:

.

.

.

g g g g

hh h h

g g

h h

f

g

h

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7.1 B�uhi{ and Rabin{tree automata

Sine our in�nite trees have no leafs, our automata start at the root, i.e. they

generalize RL{tree automata.

De�nition 7.3

1. A B�uhi{tree automaton over the alphabet � (with � = �

2

) is of the

form A = (Q;�; I;�; F ) where

� Q;�; I;� are as for RL{tree automata

� F � Q is a set of �nal states
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2. A Rabin{tree automaton over the alphabet � (with � = �

2

) is of the

form A = (Q;�; I;�;
), where

� Q;�; I;� are as for RL{tree automata

� 
 = f(F

1

; G

1

); : : : ; (F

n

; G

n

)g with F

i

; G

i

� Q

(Compare this to exerise 55.)

A run ` of a (B�uhi{ or Rabin{) tree automaton on the tree t 2 T

!

�

is de�ned

as follows:

` : f0; 1g

�

! Q suh that (`(u0); `(u1)) 2 �

f

(`(u)) where f = t(u)

f

u

q = `(u)

q

1

= `(u0)

q

2

= `(u1)

(q

1

; q

2

) 2 �

f

(q)

Thus a run is itself an in�nite tree over the alphabet Q (where all q 2 Q have

arity 2). The run ` of a B�uhi tree{automaton is alled suessful i�

� `(") 2 I

� every path in ` ontains in�nitely often �nal states

The run ` of the Rabin{tree automaton is alled suessful i�

� `(") 2 I

� for every path in ` there is an i (1 � i � n) suh that

{ the path ontains in�nitely often states from F

i

{ none of the states in G

i

ours in�nitely often in the path
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Thus, the aeptane ondition for B�uhi/Rabin automata on !{words is

applied to paths in the in�nite tree.

L

!

(A) := ft 2 T

!

�

j there is a suessful run of A on tg

L � T

!

�

is alled B�uhi{reognizable (Rabin{reognizable) i� there is a B�uhi{

(Rabin{) tree automaton A suh that L

!

(A) = L

Proposition 7.4 Every B�uhi{reognizable language is also Rabin{reognizable.

Proof: Let A = (Q;�; I;�; F ) be a B�uhi tree{automaton with L = L

!

(A).

The Rabin{tree automaton A

0

:= (Q;�; I;�; f(F; ;)g) obviously aepts L.

The following examples illustrate the di�erene between B�uhi{ and Rabin{

tree automata.

Example 7.5 � = fa; bg and

L

1

= ft 2 T

!

�

j there is a path in t ontaining in�nitely many a'sg:

We want to design a B�uhi tree automata for L

1

.

Idea: the automata \guesses" the path ontaining in�nitely many a's

A

1

= (f i; f

states on

the guessed

path

;

2

other

paths

g;�; fig;�

1

; f f

have

seen a

;

2

on another

path

g)

�

1

a

: i 7!f(f;2); (2; f)g �

1

b

: i 7!f(i;2); (2; i)g

f 7!f(f;2); (2; f)g f 7!f(i;2); (2; i)g

2 7!f(2;2)g 2 7!f(2;2)g

The \guessed" path is labelled by states from fi; fg with label f immediately

after a node with a was reahed. Thus the path in the run ontains in�nitely

many f 's i� on the orresponding path in the tree there are in�nitely many

a's. The other paths are labelled with 2 exept for a �nite initial segment.

Thus, suh paths in the run ontain in�nitely often 2.
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Example 7.6 � = fa; bg and

L

2

= ft 2 T

!

�

j every path in t ontains only �nitely many a'sg:

Obviously, L

2

= T

!

�

n L

1

. The following is a Rabin{tree automaton for L

2

:

A

2

= (fi; fg;�; fig;�

2

; f(fi; fg;


2

g) where

�

2

a

: i 7! f(f; f)g

f 7! f(f; f)g

f means \have seen a"

�

2

b

: i 7! f(i; i)g

f 7! f(i; i)g

i means \have seen b"




2

= f( fi; fg

no ondition

on states seen

in�nitely often

; ffg

f restrited to

our �nitely

often in eah path

)g

For every path, this path ontains in�nitely many a's i� in the orresponding

run this path ontains in�nitely many f 's.

Proposition 7.7 The language L

2

of Example 7.6 is Rabin{reognizable

but not B�uhi{reognizable.

Proof: It remains to show that L

2

is not B�uhi{reognizable. Assume that

A = (Q;�; I;�; F ) is a B�uhi tree{automaton for L

2

. Let n be suh jQj < n.

We onstrut a tree t

(n)

: f0; 1g

�

! � as follows:

t

(n)

(u) :=

�

a u 2 U

n

b u 62 U

n

where

U

n

:= f"g [ f1

m

1

0 j m

1

> 0g [ f1

m

1

01

m

2

0 j m

1

> 0; m

2

> 0g

[ : : : [ f1

m

1

01

m

2

0 � � �1

m

n

0 j m

1

> 0 : : :m

n

> 0g

This tree ontains in�nitely many a's, but in every path there are at most

n + 1 a's. Thus, t

(n)

2 L

2

.
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1

m

1

01

m

2

0

a

b

a

a

b

a

b

b

a

1

m

1

1

m

1

0

1

m

1

01

m

2

To reah an a that is not at the

root, we must go at least one to

the right, and then to the left. The

next a is reahed in the same way.

After going n times to the left, the

�nal a is reahed.

Sine t

(n)

2 L

2

, there is a suessful run ` of A on t

(n)

. We use ` to onstrut

a path in t

(n)

:

� let m

1

> 0 be minimal with `(1

m

1

) = f

1

2 F . Suh a �nal state exists

sine every path in ` ontains in�nitely many �nal states.

� assume that m

1

; m

2

; : : : ; m

i

> 0 (i < n) are already de�ned. Let

m

i+1

> 0 be minimal with `(1

m

1

01

m

2

0 � � �1

m

i

01

m

i+1

) = f

i+1

2 F . This

de�nes m

1

; : : : ; m

n

> 0 suh that the following holds:

f

1

2 F

a

b

a

a

b

a

b

b

a

1

m

1

1

m

1

0

1

m

1

01

m

2

1

m

1

01

m

2

0

f

2

2 F
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Sine jQj < n, there are i < j suh

that f

i

= f

j

. Thus, we have the

following situation:

f

i

a

t

(n)

u

f

i

uv

If we replae in t

(n)

the tree at

position uv by t

(n)

u

, then we get

a new tree whih still has a su-

essful run. If we iterate this an

in�nite number of times, we ob-

tain a tree that is also aepted by

A and has a path ontaining in-

�nitely many a's.  

uvvv

uv

f

i

a

a

a

t

(n)

u

f

i

.

.

.

f

i

f

i

uvv

Corollary 7.8 The lass of B�uhi{reognizable !{tree{languages is not losed

under omplement.

Proof: L

1

is B�uhi{reognizable, but L

2

= T

!

�

n L

1

is not.

Proposition 7.9 The lass of Rabin{reognizable tree{languages is losed

under omplement.

The proof is quite involved. There are several approahes for proving this

(Handbook artile by W. Thomas). Why is this harder to prove than for

B�uhi{automata on words? The reason lies in the quanti�er on paths in the

de�nition of a suessful run:
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\For all paths the aeptane ondition is satis�ed."

If we negate this, we obtain:

\There exists a path, suh that the aeptane ondition is not satis�ed."

In addition to transforming \not satis�ed" into \satis�ed", one must also

transform \exists a path" into \for all paths".

7.2 Deidability results

Goal: redue logial satis�ability problems to the emptiness problem for the

automata.

Thus, we want the emptiness problem to be deidable. We �rst show deid-

ability for B�uhi tree{automata sine the proof is simpler and also yields a

haraterization of B�uhi{reognizable tree{languages.

Proposition 7.10 The emptiness problem for B�uhi{reognizable !{tree

languages is deidable.

First we show another result, from whih Prop. 7.10 an easily be dedued.

Let A = (Q;�; I;�; F ) be a B�uhi tree{automaton, where F = ff

1

; : : : ; f

m

g.

Let ` : f0; 1g

�

! Q be a suessful run of A on the tree t 2 T

!

�

. We

deompose t into �nite subtrees, whih are aepted by automata working

on �nite trees.

Let u 2 f0; 1g

�

. We are interested in where the run reahes for the �rst time

a �nal state below u:

D

u

:= fw 2 f0; 1g

�

j `(uv) 62 F for all " < v � wg

Sine D

u

is losed under pre�x, it an be viewed as the domain of the tree.

This tree is �nitely branhing and it does not ontaining an in�nite path

(otherwise ` would not be suessful). K�onig's Lemma implies that D

u

is

�nite.

D

+

u

:= D

u

[ fw� j � 2 f0; 1g ^ w 2 D

u

^ w� 62 D

u

g

By de�nition of D

u

we have `(w�) 2 F for all w� 2 D

+

u

nD

u

.
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Example: onsider a run of the B�uhi tree{automaton of Ex. 7.5 on the

following tree:

2

.

.

.

.

.

.

.

.

.

a

b

b

a

b

b

b

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

F = f2; fg

i

i

i

f

.

.

.

.

.

.

2

222

a

D

"

= f"; 0; 00g D

1

= f"g

D

+

"

nD

"

= f1; 01; 000; 001g D

+

1

nD

1

= f0; 1g:

For u 2 f0; 1g

�

we de�ne the �nite tree

b

t

u

: D

+

u

! � [ F

b

t

u

(w) =

�

t(uw) if w 2 D

u

`(uw) if w 2 D

+

u

nD

u

Thus,

b

t

u

2 T

� [ F

, where f 2 F is a symbol of arity 0.

Example:

^

t

1

b

b

a

a

2

2

2

2

2

f

^

t

�

For every q 2 Q we de�ne the RL{tree automaton A

q

= (Q;�[F; fqg;�;

b

F )

where

b

F (f) = f for all f 2 F .

Let L

q

:= L(A

q

) � T

� [ F

. Then the following holds: If `(u) = q, then

b

t

u

2 L

q

.
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Example:

f

2

2

b

b

a

i

i

i

f

2

2

2

2

suessful run of A

i

This shows that:

t 2

b

L := (

[

i 2 I

L

i

) �

(f

1

;:::;f

m

)

(L

f

1

; : : : ; L

f

m

)

!; (f

1

;:::;f

m

)

Conversely, it is easy to see that any element of

b

L belongs to L

!

(A). Thus,

we have shown that

b

L = L

!

(A).

Proposition 7.11 For an !{tree language L � T

!

�

the following are equiv-

alent:

1. L is B�uhi{reognizable

2. There are reognizable tree languages L

0

; : : : ; L

m

� T

� [ F

for some

alphabet F = ff

1

; : : : ; f

m

g of symbols of arity 0 suh that:

L = L

0

�

(f

1

;:::;f

m

)

(L

1

; : : : ; L

m

)

!;(f

1

;:::;f

m

)

Proof:

\1) 2" we have just shown.

\2) 1" use RL{tree automata for L

0

; : : : ; L

m

to onstrut a B�uhi tree{

automaton for L (exerise).
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Proof of Prop 7.10: LetA = (Q;�; I;�; F ) be a B�uhi tree{automaton for

L. Let the tree languages L

q

be de�ned as above. We suessively eliminate

states that annot our in a suessful run.

1. The automaton A

1

= (Q

1

;�; I

1

;�

1

; F

1

) is obtained from A by elim-

inating those states q 2 Q with L

q

= ;. Sine A

q

is an automaton

on �nite trees, L

q

= L(A

q

) = ; is deidable (Prop 6.22). To be more

preise:

Q

1

= Q n fq 2 Q j L

q

= ;g

I

1

= I \Q

1

F

1

= F \Q

1

�

1

a

: Q

1

! 2

Q

1

�Q

1

: q 7! �

a

(q) \Q

1

�Q

1

;

Why does L

q

= ; imply that q annot our on a suessful run? If `

is a suessful run and `(u) = q, then

b

t

u

2 L

q

, and thus L

q

= ;. This

shows that L

!

(A

1

) = L

!

(A).

2. By iterating this, we obtain a sequene A

1

;A

2

; : : : of

B�uhi tree{automata with L

!

(A

i

) = L

!

(A). Sine Q is �nite, this

sequene beomes stable after a �nite number of steps, i.e. one reahes

an automaton A

n

suh that

L

!

(A) = L

!

(A

n

) and L

q

6= ; for all q 2 Q

n

(note: Q

n

= ; is possible).

3. We laim: L

!

(A

n

) 6= ; i� I

n

6= ;.

Proof of the laim: We know from Prop 7.11:

L

!

(A

n

) =

 

[

i2I

n

L

i

!

�

(f

1

;:::;f

m

)

(L

f

1

; : : : ; L

f

m

)

!;(f

1

;:::;f

m

)

;

Obviously, I

n

= ; implies that this expression is empty. If I

n

6= ;,

then

S

i 2 I

L

i

6= ; sine L

i

6= ; for all i 2 I

n

. I

n

6= ; also implies that

F

n

6= ; (sine for F

n

= ; all the sets L

q

are empty). Thus, there are

trees t

0

2

S

i 2 I

n

L

i

; t

1

2 L

f

1

; : : : ; t

m

2 L

f

m

for F

n

= ff

1

; : : : ; f

m

g 6= ;.

But then the tree

ft

0

g �

(f

1

;:::;f

m

)

(ft

1

g; : : : ; ft

m

g)

!;(f

1

;:::;f

m

)

belongs to L

!

(A).
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Example: automaton from Example 7.5:

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ba

b

a

a

b b

a b b b b bb

2 fa(f;2)g �

(f;2)

(fa(f;2)g; fb(2;2)g)

!;(f;2)

Proposition 7.12 The emptiness problem for Rabin{reognizable !{tree

languages is deidable.

Proof: Let A = (Q;�; I;�;
) be a Rabin{tree automaton. A state q 2 Q is

alled ative i� it an be reahed from some state and does not only reprodue

itself. To be more preise: q 2 Q is ative if there exist a; b 2 � and states

q

0

; q

1

; q

2

; q

0

2 Q suh that

� (q; q

0

) 2 �

b

(q

0

) or (q

0

; q) 2 �

b

(q

0

) (reahable)

� (q

1

; q

2

) 2 �

a

(q) where fq

1

; q

2

g 6= fqg (does not reprodue itself)

Otherwise, q is passive. Passive states allow only transitions of the form

�

a

(q) = f(q; q)g or they an only our at the root of a suessful run. Note

that it is obviously deidable whether a given state is ative or not. We show

deidability of the emptiness problem by indution on the number of ative

states in A.

Indution base: no ative states

A suessful run then has the following

form:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

2

q

2

i

q

1

q

1

q

1

q

2
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This means that there are states i; q

1

; q

2

2 Q suh that

� there are a; b;  2 � with

{ (q

1

; q

2

) 2 �

a

(i)

{ (q

1

; q

1

) 2 �

b

(q

1

)

{ (q

2

; q

2

) 2 �



(q

2

)

� i 2 I

� there are (F;G); (F

0

; G

0

) 2 
 with q

1

2 F and q

1

=2 G, q

2

2 F

0

and q

2

=2 G

0

.

Obviously it is deidable whether suh a triple i; q

1

; q

2

exists.

Indution step: n > 0 ative states

For a suessful run ` : f0; 1g

�

! Q there are three possibilities.

Case 1: one of the ative states does not our in `

Then ` is also a suessful run of the automaton A

�

q

obtained from A

by deleting q.

A

�

q

= (Q

0

;�; I \Q

0

;�

0

;


0

) where

Q

0

= Q n fqg

�

0

a

: Q

0

! 2

Q

0

� Q

0

: �

0

a

(p) = �

a

(p) \ (Q

0

�Q

0

)




0

= f(F

0

; G

0

) j

there is (F;G) 2 
 suh that F

0

= F \Q

0

and G

0

= G \Q

0

g

It an be deided whether this ase holds for some suessful run by

onsidering for every state q the automaton A

�

q

and then deiding the

emptiness problem for A

�

q

(by indution this is deidable sine A

�

q

has

less ative states).

Case 2: In ` there is a node u suh that `(u) = q and q is ative and

the subtree `

u

does not ontain the ative state q

0

(exept possibly at

the root if q = q

0

).

Let

b

`

q

be the \tree" obtained from ` by pruning all branhes immedi-

ately below the �rst ourrene of q in eah path. (Note:

b

`

q

may have
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both �nite and in�nite paths). Then

b

`

q

�

q

`

u

is still a suessful run!

How an we test whether suh runs

b

`

q

and `

u

exist?

1. Existene of

b

`

q

b

`

q

is modi�ed to

~

`

q

by replaing the

leafs labelled with q by the tree:

q

q q q

q

q

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

An automaton that has

~

`

q

as suessful run an be obtained as

follows:

~

A

q

= (Q;�; I;�

0

;


0

) where

� �

0

a

(q) = f(q; q)g and �

0

a

(p) = �

a

(p) for all p 6= q

� 


0

= 
 [ f(fqg; ;)g

We have L

!

(

~

A

q

) 6= ; i� there exists a run

~

`

q

. Obviously

~

A

q

has

one ative state less than A, and thus L

!

(

~

A

q

) 6= ; is deidable by

indution.

2. `

u

is a suessful run of the automaton A

�

q; q

0

, whih is obtained

from A by removing q

0

from �. To be more preise:

A

�

q; q

0

= (Q;�; fqg;�

0

;
) where

�

0

a

(p) = �

a

(p) \ (Q

0

�Q

0

) for all a 2 �; p 2 Q where

Q

0

= Q n fq

0

g

Again, A

�

q; q

0

has one ative state less than A sine q

0

is no longer

ative.

By indution, we an test for all pairs (q; q

0

) of ative states, whether

~

A

q

and A

�

q; q

0

aept non{empty languages. If this is the ase, then A

has a suessful run satisfying Case 2.

Case 3: There is at least one ative state and below every ative state in `

every other ative state ours.

Thus, there is a path � in ` suh that every ative state ours in�nitely

often on �. Exept at the beginning of �, no passive states an our

on �. There must be a pair (F

0

; G

0

) 2 
 that aepts �. Thus, F

0

ontains at least one ative state and none of the ative states ours
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in G

0

(i.e. G

0

ontains only passive states). Let q 2 F

0

be an ative

state.

The \tree"

b

`

q

is de�ned as in Case 2. Let u 2 f0; 1g

�

be suh that

`(u) = q. The tree

b

`

u;q

is obtained from `

u

by pruning below every

ourrene of q that is not at the root.

Example:

b

`

0;q

=

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

` =

q q qq

qq

q

b

`

q

=

q q

.

.

.

.

.

.

q

1

q

1

q q

q

1

q

1

q

1

q

1

q

.

.

.

Obviously,

b

`

q

�

q

b

`

u;q

!;q

is a run of A. Why is it suessful? Let � be a

path in this run.

Case a: � is an in�nite path in

b

`

q

or an in�nite �nal segment of �

belongs to

b

`

u;q

. Then this path is aepted by some pair in 


sine an in�nite �nal segment of it also ours in a path in `.

Case b: Otherwise, q ours in�nitely often in �. In addition, a pas-

sive state an only our at the beginning of �. Thus, (F

0

; G

0

)

aepts �.

Existene of

b

`

q

an be tested as shown in Case 2.

Existene of

b

`

u;q

: Sine q in

b

`

u;q

has two di�erent funtions (at the root

and the leafs), we rename q at the root to a new state q

0

.

b

`

q

0

u;q

is obtained

from

b

`

u;q

by labelling the root with q

0

. As in the seond ase, we modify

b

`

q

0

u;q

to

~

`

q

0

u;q

. The automaton

~

A

q

0

;q

= (Q [ fq

0

g;�; fq

0

g;�

0

;


0

) with

� q

0

=2 Q

� �

0

a

(q

0

) := �

a

(q)

�

0

a

(q) := f(q; q)g

�

0

a

(q

0

) := �

a

(q

0

) for q

0

=2 fq; q

0

g
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� 


0

= 
 [ f(fqg; ;)g

has

~

`

q

0

u;q

as a suessful run. It has one ative state less than A sine

q; q

0

are passive.

To sum up:

For a Rabin{tree automaton A we have L

!

(A) = ; i� the following holds:

� If A does not ontain ative states, then there does not exists a triple

i; q

1

; q

2

2 Q suh that

{ i 2 I and

{ there is a; b;  2 � with (q

1

; q

2

) 2 �

a

(i), (q

1

; q

1

) 2 �

b

(q

1

), (q

2

; q

2

) 2

�



(q

2

)

{ there exist (F;G); (F

0

; G

0

) 2 
 suh that q

1

2 F and q

1

=2 G,

q

2

2 F

0

, q

2

=2 G

0

� If A ontains at least one ative state, then for all ative states q:

{ L(A

�

q

) = ;

{ L(

~

A

q

) = ; or L(A

�

q;q

0

) = ; for all ative states q

0

, and

{ if there is a pair (F

0

; G

0

) 2 
 with q 2 F

0

and G

0

ontains only

passive states, then L(

~

A

q

) = ; or L(

~

A

q

0

;q

) = ;.
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Chapter 8

Tree{automata and logial

formulae

8.1 S2S logi

We extend S1S to a logi with 2 suessor funtions. Instead of the interpre-

tation domain N (!) we use the in�nite binary tree.

De�nition 8.1

1. Formulae of the logi S2S are built like formulae of S1S, with the only

di�erene that

� the suessor funtion s is replaed by two suessor funtions s

0

and s

1

.

� The onstant 0 is replaed by the onstant ".

2. As interpretation domain we take the set f0; 1g

�

(the domain of in�nite

binary trees), where

� " is interpreted as " (the root)

� s

0

,s

1

are interpreted as s

0

: u 7! u0, s

1

: u 7! u1
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� < is interpreted as the pre�x order on f0; 1g

�

i.e. u < v i� 9w 2

f0; 1g

+

: uw = v

� P

1

; : : : ; P

n

are interpreted as subsets of f0; 1g

�

S2S{formulae an be used to de�ne !{tree languages. As in the ase of S1S

we use the alphabet � = f0; 1g

n

. Every element of � has arity 2. An S2S

interpretation I an be viewed as an !-tree t

I

with labels from �:

t

I

(u) := (b

1

; : : : ; b

n

) where b

i

=

�

1 u 2 P

i

I

0 u =2 P

i

I

:

De�nition 8.2 Let ' be a losed S2S{formula. Then,

L

!

(') := ft

I

2 T

!

�

j I j= 'g:

Some examples of S2S{formulae:

� Chain(X) : desribes subsets X of f0; 1g

�

suh that all elements are

pre�x{omparable.

Chain(X) : 8x 8y (X(x) ^X(y)) x < y _ x = y _ y < x)

� Path(X) : paths are maximal hains (no holes)

X � Y : 8x X(x)) Y (x)

X = Y : 8x X(x), Y (x)

Path(X) : Chain(X) ^ 8Y (X � Y ^ Chain(Y )) X = Y )

� In�niteChain(X)

In�niteChain(X) : Chain(X) ^ 8x (X(x)) 9y (x < y ^X(y)))

� Z = Pre�xClosure(X)

8z (Z(z), 9x (X(x) ^ (z � x)))

� Finite(X)

Finite(X) : 8Z (Z = pre�xClosure(X)) :9Y (Y � Z^In�niteChain(Y )))
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Why does this express �niteness of X ?

{ If X is in�nite, then so is its pre�x losure Z. Thus Z an be

viewed as in�nite tree. By K�onig's lemma it ontains an in�nite

path Y .

{ If X is �nite, then its pre�x losure is �nite, and thus annot

ontain an in�nite hain.

Example 8.3 n = 1, i.e. � = f0; 1g.

1. L

1

= ft 2 T

!

�

j there is a path in t ontaining in�nitely many 1'sg

(see Example 7.5)

'

1

= 9Y Path(Y ) ^ 8x (Y (x)) 9y (Y (y) ^ x < y ^ P

1

(y)))

2. L

2

= L

1

L

2

= L

!

(:'

1

)

Proposition 8.4 (Rabin) For an !{tree language L � T

!

�

the following are

equivalent

1. L is Rabin{reognizable.

2. L = L

!

(') for a losed S2S{formula '.

Proof: very similar to the proof of Prop. 5.4.

\1) 2" Let A = (Q;�; I;�;
) be a Rabin{tree automaton with Q =

fq

1

; : : : : : : ; q

m

g. For every q

j

we introdue a seond{order variable Y

j

with the intended interpretation:

x belongs to Y

j

if the run labels x by q

j

.
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The existene of a suessful run an be expressed as follows:

9Y

1

: : :9Y

m

�

_

q

i

2I

Y

i

(")^

8x

^

i 6=j

:(Y

i

(x) ^ Y

j

(x))^

8x

_

(q

i

;q

j

)2�

a

(q

k

)

a2�

Y

k

(x) ^Q

a

(x) ^ Y

i

(s

0

(x)) ^ Y

j

(s

1

(x))^

8Z Path(Z))

_

(F;G)2


�

_

q

i

2F

8x (Z(x)) 9y (Z(y) ^ x < y ^ Y

i

(y)))^

^

q

i

2G

9x 8y (Z(y) ^ x < y ) :Y

i

(y))

�

�

\2) 1" As in the ase of S1S we redue S2S{formulae to S2S

0

{formulae.

Then the proof is by indution on the struture of S2S

0

{formulae. For

the indution step one uses losure under Boolean operations and al-

phabet renaming for Rabin{reognizable languages.

Corollary 8.5 Validity in S2S is deidable.

Instead of binary trees one an also onsider k{ary trees (k � 1). The results

for k = 2 an easily be generalized to arbitrary k. In partiular, SkS (k

suessor funtions) is deidable.
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