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Motivation and Context

In automata theory and formal languages one is interested in 
lasses of lan-

guages und their properties. A formal language is a set L � �

�

, i.e. a set

of words over a given alphabet �. � is usually �nite. A 
lass of formal

languages K assigns with ea
h �nite alphabet � a set K

�

� 2

�

�

, i.e. a set of

languages over �.

Given a 
lass K, one is interested in the following questions:

Chara
terization How 
an we 
hara
terize the languages belonging to the


lass?

We are looking for properties P su
h that:

L 2 K

�

i� L � �

�

and L satis�es P:

Usually one wants to have di�erent equivalent 
hara
terizations (au-

tomata, grammars, . . . ). Some 
hara
terizations are better for 
ertain

purposes then other 
hara
terizations.

Closure properties Under whi
h operations on languages (interse
tion,

union, 
omplement, homomorphi
 images, . . . ) is the 
lass 
losed?

De
idability Whi
h problems are de
idable for this 
lass?

e.g.: w 2 L? L 6= ;? L

1

� L

2

?

One assumes that the (usually in�nite) languages are given by a �nite

representation 
orresponding to one of the 
hara
terizations.
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MOTIVATION AND CONTEXT

The most important 
lasses are 
olle
ted in the Chomsky hierar
hy:

Class Chara
terization

Type 0

� generated by general Chomsky grammars (transitions u!

v where u 
ontains a non{terminal)

� a

epted by Turing ma
hines

Type 1


ontext

sensitive

� generated by 
ontext sensitive grammars (transitions u! v

where 1 � juj � jvj)

� a

epted by Turing ma
hines with a linearly bounded tape

Type 2


ontext

free

� generated by 
ontext free grammars (transitions X ! v

where X is non{terminal)

� a

epted by push{down automata

Type 3

regular

� generated by right linear grammars (transitions X ! uY ,

X ! u where X; Y are non{terminal and u is a terminal

word)

� a

epted by a �nite automata

Examples of further 
hara
terization

Do deterministi
 ma
hines (automata) yield the same 
lass as non determin-

isti
 ones?

Type 0 Yes

Type 1 Open

Type 2 No

Type 3 Yes

Examples of 
losure properties

Is the 
lass 
losed under 
omplementation, i.e. L 2 K

�

; �

�

n L 2 K

�

?

2 Mar
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MOTIVATION AND CONTEXT

Type 0 No (
omplements of re
ursively enumerable languages

need not to be re
ursively enumerable)

Type 1 Yes (relatively new result, 1987).

Type 2 No (related to determinism)

Type 3 Yes

Examples of de
ision problems

Are the word problem and the equivalen
e problem de
idable?

Class w 2 L ? L

1

= L

2

?

Type 0 unde
idable unde
idable

Type 1 de
idable unde
idable

Type 2 de
idable unde
idable

Type 3 de
idable de
idable

The le
ture will mostly 
on
entrate on Type 3 languages. We will look at

sub
lasses, di�erent 
hara
terizations and generalizations to in�nite words

and trees. The s
ript is organized in three parts:

1. Regular languages of �nite words

As alternative 
hara
terizations we will 
onsider:

� Algebrai
 
hara
terizations

{ Every language 
an be asso
iated with a monoid (synta
ti
 monoid).

{ Regular languages are those whose synta
ti
 monoid is �nite.

� Logi
al 
hara
terizations

{ Logi
al formulae 
an de�ne languages.

{ There is a logi
 (monadi
 se
ond{order logi
) that de�nes the

regular languages.

These 
hara
terizations 
an be used to de�ne sub
lasses of the 
lass of regular

languages. The most prominent one is the 
lass of star{free languages:

Mar
h 3, 2005 3



MOTIVATION AND CONTEXT

� They are de�ned by formulae of �rst{order predi
ate logi
.

� Their synta
ti
 monoid is aperiodi
.

2. Languages of in�nite words

Instead of �nite words (�nite sequen
es of letters) one 
an 
onsider in�nite

words (in�nite sequen
es of letters) as input for �nite automata. The only

thing that must be 
hanged is the a

eptan
e 
ondition.

� Finite words: after reading the word a �nal state is rea
hed

� In�nite words: 
onditions on the states that are rea
hed in�nitely often

We will show 
losure properties, de
idability of the emptiness problem and we

will look at the 
onne
tion to logi
. One 
an obtain interesting de
idability

results for logi
s.

3. Tree languages (or forrests)

Words 
an be viewed as labeled trees with bran
hing fa
tor � 1.

abaa b=

a

a

b

a

The notion of a �nite automaton 
an be extended to the one of a tree au-

tomaton by allowing for bran
hing > 1. Many results for regular languages

generalize to tree languages. There is again an interesting 
onne
tion to

logi
s.
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MOTIVATION AND CONTEXT

The main emphasis will be on appli
ations in logi
 (de
idability results).

Methods are as important as the results! There will be an emphasis on

proofs!
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Chapter 1

Regular languages, �nite

monoids and logi
al formulae

Goal of this 
hapter is to re
apitulate some de�nitions and results for regular

languages and establish a relationship to monoids and formulae.

1.1 Regular languages and �nite automata

De�nition 1.1 Let � be a �nite alphabet. The 
lass Reg

�

of regular lan-

guages over � is the smallest 
lass su
h that

� ;, f�g and fag for a 2 � are in Reg

�

(where � is the empty word),

� if L; L

1

; L

2

2 Reg

�

, then so are L

1

[L

2

, L

1

�L

2

= fu�v j u 2 L

1

and v 2

L

2

g, L

�

= fu

1

� � �u

n

j n � 0 and u

i

2 Lg.

As usual, we will write regular expressions to des
ribe regular languages.

E.g.: (ab)

�

a des
ribes (fag � fbg)

�

� fag, i.e. words over fa; bg starting and

ending with a, and where in between a

0

s and b

0

s alternate.

Be
ause of the de�nition, regular languages are 
losed under union, 
on
ate-

nation, and Kleene star. To show 
losure under interse
tion and 
omplement,

an alternative 
hara
terization by �nite automata is more appropriate.
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1.1. REGULAR LANGUAGES AND FINITE AUTOMATA

De�nition 1.2 A non{deterministi
 �nite automaton A = (Q; �; I; �; F )


onsists of

� a �nite set of states Q,

� a �nite alphabet �,

� a set of initial states I � Q,

� a transition relation � � Q� ��Q,

� a set of �nal states F � Q.

As usual, we will draw graphs to represent automata.

e.g.:

-

1

-

a

�

b

2

Q = f1; 2g, � = fa; bg, I = f1g (shown by

-

1

)

� = f(1; a; 2); (2; b; 1)g, F = f2g (shown by

2

)

A path in the automaton is a sequen
e q

0

a

1

q

1

a

2

: : : a

n

q

n

where (q

i�1

; a

i

; q

i

) 2

� for 1 � i � n. We will often abbreviate su
h a path as q

0

a

1

:::a

n

���!

A

q

n

. The

path is su

essful if q

0

2 I and q

n

2 F .

The automaton A a

epts the following language:

L(A) = fw 2 �

�

j q

o

w

�!

A

q

n

is a su

essful path in Ag:

A language L � �

�

is 
alled re
ognizable, if there exists a �nite automaton

A that a

epts L.

Kleene's theorem says that a language L � �

�

is re
ognizable i� it is regular.

We will use this to show that the 
lass of regular languages is 
losed under

interse
tion.

Proposition 1.3 If L

1

; L

2

2 Reg

�

, then so is L

1

\ L

2

.

Mar
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Proof: Let A

1

= (Q

1

;�; I

1

;�

1

; F

1

) and A

2

= (Q

2

;�; I

2

;�

2

; F

2

) be au-

tomata su
h that L

1

= L(A

1

) and L

2

= L(A

2

). We de�ne A := (Q

1

�

Q

2

;�; I

1

� I

2

;�; F

1

� F

2

) where

� := f((q

1

; q

2

); a; (q

0

1

; q

0

2

)) j (q

1

; a; q

0

1

) 2 �

1

and (q

2

; a; q

0

2

) 2 �

2

g:

It is easy to see that

(q

1

; q

2

)

w

�!

A

(q

0

1

; q

0

2

) i� q

1

w

�!

A

1

q

0

1

and q

2

w

�!

A

2

q

0

2

:

Together with de�nition of initial and �nal states in A this implies w 2 L(A)

i� w 2 L(A

1

) \ L(A

2

).

To show the 
losure under 
omplement, non deterministi
 automata are not

appropriate.

Note: If A = (Q;�; I;�; F ) is non{deterministi
, then the automaton A :=

(Q;�; I;�; Q n F ) need not satisfy L(A) = �

�

n L(A).

E.g.: A :=

-

1

a

-

a

2

Q = f1; 2g, � = fag, I = f1g

� = f(1; a; 1); (1; a; 2)g, F = f1g

L(A) = a

�

, L(A) = a

+

, but a

�

n L(A) = ;

This 
onstru
tion works if the automaton is deterministi
.

De�nition 1.4 The automaton A = (Q;�; I;�; F ) is 
alled deterministi


i�:

� jIj = 1, i.e. I = fq

0

g,

� � is fun
tional, i.e. for every q 2 Q and every a 2 � there is exa
tly

one q

0

2 Q su
h that (q; a; q

0

) 2 �.

8 Mar
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1.1. REGULAR LANGUAGES AND FINITE AUTOMATA

Instead of the transition relation � we will often use the transition fun
tion.

Æ : Q� � ! Q

(q; a) 7! q

0

i� (q; a; q

0

) 2 �:

The fun
tion Æ 
an be extended to words by de�ning Æ(q; w) := q

0

, where q

0

is

the unique state su
h that q

w

�!

A

q

0

. We have L(A) = fw 2 �

�

j Æ(q

0

; w) 2

Fg.

The power set 
onstru
tion 
an be used to 
onstru
t a deterministi
 automa-

ton P (A) from a given non{deterministi
 automaton A = (Q;�; I;�; F ).

We de�ne P (A) := (2

Q

;�; q

o

; Æ

0

; F

0

) where:

� q

0

:= I;

� Æ

0

(P; a) := fq 2 Q j 9p 2 P with (p; a; q) 2 �g;

� F

0

:= fP � Q j P \ F 6= ;g:

It is easy to see that L(A) = L(P (A)) and that P (A) is deterministi
.

Proposition 1.5 If L 2 Reg

�

, then L = �

�

n L 2 Reg

�

.

Proof: For L there exists a deterministi
 automaton A = (Q;�; q

0

; Æ; F )

with L = L(A). Thus w 2 L i� Æ(q

0

; w) 2 F . This is equivalent to saying

that w 2 L i� Æ(q

0

; w) 2 QnF . Consequently A = (Q;�; q

0

; Æ; QnF ) a

epts

L.

Minimization of deterministi
 automata:

For every regular language there is a unique (up renaming of states) minimal

deterministi
 automaton a

epting this language.

Given a deterministi
 automaton A = (Q;�; q

0

; Æ; F ), one 
an minimize it as

follows:

1. Remove unrea
hable states, i.e. states q 2 Q su
h that there is no

w 2 �

�

with Æ(q

o

; w) = q.

Mar
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

2. Identify equivalent states.

For q 2 Q let A

q

:= (Q;�; q; Æ; F ).

We de�ne:

q �

A

q

0

i� L(A

q

) = L(A

q

0

):

The relation �

A

is an equivalen
e relation. Now identify equivalent

states. This yields the unique minimal automaton.

Alternatively, the minimal automaton 
an be obtained using the Nerode right


ongruen
e. For a language L � �

�

we de�ne

u�

L

v i� 8w 2 �

�

: (uw 2 L i� vw 2 L):

This relation is an equivalen
e relation, whi
h additionally satis�es:

u�

L

v ; uw�

L

vw (right 
ongruen
e).

Nerode's theorem says that a language L is regular i� �

L

has a �nite index,

i.e. it has �nitely many equivalen
e 
lasses.

We 
an view these 
lasses as states of an automaton:

for u 2 �

�

, [u℄ := fv j u�

L

vg denotes the �

L

equivalen
e 
lass of u.

We de�ne A

L

= (Q;�; q

0

; Æ; F ) where

� Q := f[u℄ j u 2 �

�

g (�nite if L is regular),

� q

0

:= [�℄,

� Æ([u℄; a) := [ua℄ (independen
e of representatives!),

� F := f[u℄ j u 2 Lg (independen
e of representatives!).

For a regular language L, A

L

is the minimal deterministi
 automaton for L.

10 Mar
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

1.2 Regular languages and �nite monoids

A monoid (M; �

M

; 1

M

) 
onsists of a non empty set M , an asso
iative binary

operation �

M

and a unit element 1

M

2M , i.e. the following must be satis�ed:

8x; y; z 2M : (x �

M

y) �

M

z = x �

M

(y �

M

z) (asso
iative);

8x 2M : 1

M

�

M

x = x �

M

1

M

= x (unit element):

We will often write justM instead of (M; �

M

; 1

M

) and we will often omit the

index M . A monoid (M; �

M

; 1

M

) is �nite i� M is �nite.

Let M;N be monoids. The mapping � :M ! N is a homomorphism i�:

� �(x �

M

y) = �(x) �

N

�(y),

� �(1

M

) = 1

N

.

Example 1.6 For an alphabet �, the set �

�

together with 
on
atenation as

binary operation and the empty word � as unit element is a monoid.

�

�

is 
alled the free monoid over � sin
e it satis�es the following universal

property:

For any monoid M and any mapping f : �!M , this mapping 
an uniquely

be extended to a homomorphism � : �

�

!M with �j

�

= f .

In fa
t: �(�) := 1

M

and �(a

1

: : : a

n

) := �(a

1

) �

M

: : : �

M

�(a

n

)

This means: homomorphisms from �

�

! M 
an be de�ned by mappings

f : �!M

Homomorphisms from �

�

into a monoid M 
an be used to de�ne languages

(i.e. subsets of �

�

).

De�nition 1.7 Let M be a monoid, � an alphabet and � : �

�

! M a

homomorphism. Every subset N of M de�nes a subset of �

�

:

�

�1

(N) := fw 2 �

�

j �(w) 2 Ng

The language L � �

�

is a

epted by M i� there is N � M and a homomor-

phism � : �

�

!M su
h that L = �

�1

(N).

Mar
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Proposition 1.8 Let L � �

�

. Then the following are equivalent:

1. L is a

epted by a emphasize monoid.

2. L is regular.

Proof:

\1 ; 2" The monoid itself 
an be viewed as a �nite automaton.

Let � : �

�

! M be a homomorphism and L = �

�1

(N) for N � M

whereM is a �nite monoid. The deterministi
 �nite automaton A

M

:=

(M;�; 1; Æ; N) with transition fun
tion Æ(m; �) := m � �(�) a

epts L.

First, one shows:

For all w 2 �

�

and all m 2 M we have Æ(m;w) = m � �(w)

(indu
tion over jwj).

Consequently, Æ(1; w) = 1 � �(w) = �(w).

w 2 L = �

�1

(N) i� �(w) 2 N

i� Æ(1; w) 2 N

i� w 2 L(A

M

):

\2 ; 1": Let A = (Q;�; q

0

; Æ; F ) be a deterministi
 automaton with L =

L(A). Every word w 2 �

�

de�nes a fun
tion Æ

w

: Q! Q : q 7! Æ(q; w).

Let M = Q

Q

be the set of fun
tion from Q to Q. Sin
e Q is �nite, M

is also �nite. With 
omposition of fun
tions as binary operation and

the identity fun
tion as unit element, M is a monoid.

Notation: (Æ

1

Æ Æ

2

)(q) := Æ

2

(Æ

1

(q)) (order!)

It is easy to see that � : �

�

!M : w 7! Æ

w

is a homomorphism.

How must N �M be de�ned?

Condition: L(A) = �

�1

(N)

w 2 L(A) i� �(w) 2 N

+ +

Æ(q

0

; w) = Æ

w

(q

0

) 2 F i� Æ

w

2 N

Thus, if we de�ne N := fÆ

w

j w 2 �

�

and Æ

w

(q

0

) 2 Fg, then �

�1

(N) =

L(A) = L

12 Mar
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

The image of �

�

under � is 
alled the transition monoid of A:

De�nition 1.9 If A = (Q;�; q

0

; Æ; F ) is a deterministi
 �nite automaton,

then its transition monoid is the submonoid M

A

:= fÆ

w

j w 2 �

�

g of M =

Q

Q

.

The transition monoid of the minimal automaton is of parti
ular interest.

De�nition 1.10 For a regular language L, the transition monoid of the

minimal automaton is 
alled the synta
ti
 monoid of L. We denote this

monoid as M

L

.

Sin
e the minimal automaton is uniquely de�ned by L, M

L

only depends

on L. We 
an also de�ne M

L

dire
tly from L (without the detour through

automata).

De�nition 1.11 For an arbitrary language L � �

�

, its synta
ti
 
ongruen
e

�

L

on �

�

is de�ned as follows:

8u; v 2 �

�

: u �

L

v i� 8x; y 2 �

�

: xuy 2 L i� xvy 2 L:

It is easy to show that �

L

is a 
ongruen
e, i.e. it is an equivalen
e relation

that also satis�es:

8u; v; x 2 �

�

: (u �

L

v ; (ux �

L

vx and xu �

L

xv)) :

Thus, we 
an 
onstru
t the quotient monoid �

�

=

�

L

:

� domain f[w℄

�

L

j w 2 �

�

g where [w℄

�

L

:= fw

0

j w �

L

w

0

g

� operation [u℄

�

L

� [v℄

�

L

:= [uv℄

�

L

(independen
e of representatives sin
e

�

L

is a 
ongruen
e)

� unit element [�℄

�

L

.

Mar
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Proposition 1.12 Let L � �

�

be regular. Then �

�

=

�

L

is isomorphi
 to the

synta
ti
 monoid M

L

.

Proof: Let A = (Q;�; q

0

; Æ; F ) be the minimal automaton for L.

We de�ne:

 : �

�

=

�

L

! M

L

[u℄

�

L

7! Æ

u

1. This de�nition is independent of the 
hosen representative,

i.e. u �

L

v ! Æ

u

= Æ

v

.

Assume that u �

L

v, but Æ

u

6= Æ

v

. Thus there is a q 2 Q su
h that

Æ

u

(q) = Æ(q; u) = q

1

6= q

2

= Æ(q; v) = Æ

v

(q):

Sin
e A is minimal, q is rea
hable, i.e. there is an x 2 �

�

su
h that

q = Æ(q

0

; x).

Sin
e u �

L

v, we know for all y 2 �

�

that

xuy 2 L i� xvy 2 L:

But then we know for all y 2 �

�

that

Æ(q

1

; y) = Æ(q

0

; xuy) 2 F i� Æ(q

0

; xvy) = Æ(q

2

; y) 2 F

This shows that L(A

q

1

) = L(A

q

2

).

Sin
e A is minimal, q

1

= q

2

.

2.  is inje
tive, i.e. Æ

u

= Æ

v

) [u℄

�

L

= [v℄

�

L

.

Assume that Æ

u

= Æ

v

and xuy 2 L. We must show xvy 2 L.

xuy 2 L) Æ(q

0

; xuy) 2 F . But this yields for q

1

:= Æ(q

0

; x):

Æ(q

0

; xuy) = Æ(q

1

; uy) = Æ

y

(Æ

u

(q

1

))

Æ

u

=Æ

v

= Æ

y

(Æ

v

(q

1

)) = Æ(q

1

; vy) = Æ(q

0

; xvy) 2 F ) xvy 2 L

3.  is surje
tive:

Æ

u

is the image of [u℄

�

L

.
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4.  is a homomorphism:

 ([u℄

�

L

� [v℄

�

L

) =  ([uv℄

�

L

) = Æ

uv

= Æ

u

Æ Æ

v

=  ([u℄

�

L

) Æ  ([v℄

�

L

):

 ([�℄

�

L

) = Æ

�

:

Corollary 1.13 L is regular i� �

L

has �nite index.

Proof:

\)" If L is regular, then M

L

is the transition monoid of the minimal au-

tomaton for L. This monoid is obviously �nite.

We have just shown that M

L

' �

�

=

�

L

, and thus �

L

has only �nitely

many equivalen
e 
lasses.

\(" To show that L is regular, we show that L is a

epted by the �nite

monoid �

�

=

�

L

.

We de�ne: � : �

�

! �

�

=

�

L

: u 7! [u℄

�

L

and N := f[u℄

�

L

j u 2 Lg

We must show the following: �

�1

(N) = L

\�" u 2 L) �(u) = [u℄

�

L

2 N ) u 2 �

�1

(N)

\�" u 2 �

�1

(N)) �(u) = [u℄

�

L

2 N ) u 2 L

Note: The de�nition of N is again independent of the 
hosen representative

sin
e (�) u 2 L and u �

L

v ) v 2 L.
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CHAPTER 1. REGULAR LANGUAGES, FINITE MONOIDS . . .

Example 1.14 Let L = f�; �g

�

��f�; �g

�

.

The following is a non{deterministi
 �nite automaton for L:

1 2 3

�; �

� �

�; �

Power set 
onstru
tion only generating rea
hable states:

�

�

�

�

�

�

�

�

f1g

f1; 2g

f1; 3g

f1; 2; 3g

Thus, we now want to minimize the automaton:

�

� �

�

�

�

�

q

0

q

1

�

q

2

q

3

Identify equivalent states:

q �

A

q

0

i� L(A

q

) = L(A

q

0

)

To 
ompute �

A

we 
ompute the following relations �

n

(n � 0).

q �

0

q

0

i� (q 2 F and q

0

2 F ) or (q 62 F and q

0

62 F );

q �

n+1

q

0

i� q �

n

q

0

and 8a 2 � : Æ(q; a) �

n

Æ(q

0

; a):
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�

n

are equivalen
e relations su
h that Q�Q � �

0

� �

1

� : : :

Sin
e Q is �nite, there is a k su
h that �

k

= �

k+1

. One 
an show that then

�

k

= �

A

.

In the example:

� �

0

: has the 
lasses F = fq

2

; q

3

g and F = fq

0

; q

1

g

� �

1

: fq

0

g; fq

1

g; fq

2

; q

3

g

� �

2

=�

1

=�

A

Thus, the minimal automaton looks as follows:

p

2

p

0

p

1

�

�

�

�

�; �

The synta
ti
 monoid of L is the transition monoid of this automaton

Æ

�

=

p

0

p

1

p

2

p

0

p

1

p

2

; Æ

�

=

p

0

p

1

p

2

p

1

p

1

p

2

= Æ

��

; Æ

�

=

p

0

p

1

p

2

p

0

p

2

p

2

= Æ

��

;

Æ

��

=

p

0

p

1

p

2

p

2

p

2

p

2

= Æ

��u

for all u 2 �

�

Æ

��

=

p

0

p

1

p

2

p

1

p

2

p

2

= Æ

���

6= Æ

���

= Æ

��

:

Consequently M

A

= fÆ

�

; Æ

�

; Æ

�

; Æ

��

; Æ

��

g. The multipli
ation table 
an be

obtained from the observed identities.

Example 1.15 Not every �nite monoid 
an be obtained as synta
ti
 monoid

of a regular language.

M = f1; a; b; 
g
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� 1 a b 


1 1 a b 


a a a b 


b b a b 



 
 a b 


a; b; 
 are right absorbing, i.e. 8x 2M :

x � a = a, x � b = b, x � 
 = 
.

Note: � is asso
iative

We 
laim that M 
annot be the synta
ti
 monoid of some regular language:

Assume that L is a regular language and  :M ! �

�

=

�

L

is a isomorphism.

We know: u 2 L) [u℄

�

L

� L (see (�) in the proof of Corollary 1.13)

For m 2 fa; b; 
g we thus have:

 (m) � L or  (m) � L:

We have three elements and two possibilities for them to satisfy. Thus, two

of these elements must behave the same. We 
onsider the 
ase  (a) � L and

 (b) � L (all the other 
ases 
an be treated similarly).

Claim:  (a) =  (b) (this is a 
ontradi
tion to  being a isomorphism)

Proof of the Claim: Assume that  (a) = [u℄

�

L

and  (b) = [v℄

�

L

. We

must show that u �

L

v. Consider x; y 2 �

�

. We must show that xuy 2

L i� xvy 2 L.

Case 1: [y℄

�

L

6= [�℄

�

L

, and thus  

�1

([y℄

�

L

) is right{absorbing

 

�1

([xuy℄

�

L

) =  

�1

([x℄

�

L

) 

�1

([u℄

�

L

) 

�1

([y℄

�

L

)

=  

�1

([y℄

�

L

)

=  

�1

([x℄

�

L

) 

�1

([v℄

�

L

) 

�1

([y℄

�

L

) =  

�1

([xvy℄

�

L

)

Thus [xuy℄

�

L

= [xvy℄

�

L

, i.e. xuy �

L

xvy ) xuy 2 L i� xvy 2 L.

Case 2: [y℄

�

L

= [�℄

�

L

and thus  

�1

([y℄

�

L

) = 1.

 

�1

([xuy℄

�

L

) =  

�1

([x℄

�

L

) 

�1

([u℄

�

L

)

=  

�1

([u℄

�

L

) = a

 

�1

([xvy℄

�

L

) =  

�1

([x℄

�

L

) 

�1

([v℄

�

L

)

=  

�1

([v℄

�

L

) = b:

We know  (a) � L and �(b) � L. Thus xuy 2 L and xvy 2 L.
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1.2. REGULAR LANGUAGES AND FINITE MONOIDS

We will use the 
onne
tion between �nite monoids and regular expressions

to de�ne sub
lasses of the 
lass of regular languages.

De�nition 1.16 Let V be a 
lass of �nite monoids. The 
orresponding 
lass

of languages L(V ) is de�ned as follows:

L(V )

�

= fL � �

�

jM

L

2 V g:

Note: Sin
e V 
ontains only �nite monoids, all languages in L(V )

�

are

regular.

To obtain \reasonable" 
lasses of languages, we must restri
t the attention

to \reasonable" 
lasses of monoids. So 
alled M{varieties have turned out to

be reasonable in this 
ontext.

De�nition 1.17 A non{empty 
lass V of �nite monoids is 
alled M{variety

i� it is 
losed under building submonoids, (binary) dire
t produ
ts and ho-

momorphi
 images.

Submonoid: N �M is a submonoid of (M; �; 1) i�

� 1 2 N

� n; n

0

2 N ) n � n

0

2 N

Closure under building submonoids means: M 2 V , N is a submonoid of

M ) N 2 V .

Dire
t produ
t: M

1

�M

2

with

� 1

M

1

�M

2

= (1

M

1

; 1

M

2

)

� (m

1

; m

2

) Æ (m

0

1

; m

0

2

) = (m

1

�m

0

1

; m

2

�m

0

2

)

Homomorphi
 images: if � : M

1

! M

2

is a surje
tive homomorphism,

then M

2

is a homomorphi
 image of M

1

.
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Example 1.18 Let V

G

be the 
lass of all �nite groups. It is not hard to

show, that V

G

is an M{variety.

Note: Closure under building submonoids only holds sin
e we 
onsider �nite

groups. E.g. (Z;+; 0) is a group, and (N;+; 0) is a submonoid, but it is not

a group.

There is an alternative 
hara
terization of M{varieties using equations.

Let X be a 
ountably in�nite alphabet (of variables). An equation is of

the form u = v where u; v 2 X

�

(instead of � we usually write 1 in su
h

equations).

The monoid M satis�es the equation u = v i� �(u) = �(v) for all homomor-

phisms � : X

�

!M .

Example: assume that x; y 2 X

Then xy = yx is an equation, whi
h is satis�ed by all 
ommutative monoids:


ommutative: 8m;n 2M : m � n = n �m

Take the homomorphism � su
h that �(x) = m and �(y) = n. If M satis�es

xy = yx, then m � n = �(x) � �(y) = �(xy) = �(yx) = �(y) � �(x) = n �m:

De�nition 1.19 Let (u

n

= v

n

)

n�1

be a sequen
e of equations.

1. M ultimately satis�es (u

n

= v

n

)

n�1

i� there is a k � 1 su
h that M

satis�es (u

n

= v

n

) for all n � k.

2. The 
lass V of �nite monoids ultimately de�ned by (u

n

= v

n

)

n�1


onsists

of all the monoids that ultimately satisfy (u

n

= v

n

)

n�1

.

Theorem 1.20 [Eilenberg, S
h�utzenberger℄ For a 
lass V of �nite monoids,

the following are equivalent:

1. V is an M{variety.

2. V is ultimately de�ned by some sequen
e of equations.
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Example 1.18 (
ontinuation) The M{variety of all �nite groups is ulti-

mately de�ned by (x

�n

= 1) where �n = l
m(1; : : : ; n) (l
m = least 
ommon

multiple).

Proof:

1. If G 2 V

G

then G satis�es x

�n

= 1 for all n � jGj.

Let k := jGj

Claim: For all g 2 G there is an l � k su
h that g

l

= 1.

Consider g

0

= 1; g

1

= g; g

2

; g

3

; : : : ; g

k

.

Sin
e jGj = k, there are 0 � i � k and 1 � l � k su
h that g

i

= g

i+l

.

Sin
e l � k, we know that l j �n for all n � k ) there is an r su
h that

l � r = �n, and thus g

�n

= (g

l

)

r

= 1

r

= 1.

2. If a monoid M satis�es the equation x

�n

= 1, then M is a group: for

m 2M , we know that m

�n�1

is an inverse sin
e m�m

�n�1

= m

�n�1

�m =

m

�n

= 1.

The 
losure properties of M{varieties imply 
losure properties of the indu
ed


lasses of languages. We will show 
losure under \;[ and

�

. But �rst, we

need one more lemma.

Lemma 1.21 Let V be an M{variety and L � �

�

a language that is a

epted

by some M 2 V . Then M

L

2 V .

Proof: Sin
e M a

epts L, there is a homomorphism � : �

�

!M and a set

N � M su
h that L = �

�1

(N).

1. Without loss of generality, � 
an be assumed to be surje
tive. Other-

wise, 
onsider M

0

= �(�

�

) and N

0

= M \ N instead of M;N . Sin
e

M

0

is a submonoid of M , we know M

0

2 V .

2. De�ne for u; v 2 �

�

: u �

�

v i� �(u) = �(v).

Then �

�

��

L

.
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Sin
e: Assume u �

�

v and xuy 2 L. We must show xvy 2 L.

�(xvy) = �(x)�(v)�(y)

= �(x)�(u)�(y) sin
e u �

�

v

= �(xuy) 2 N sin
e xuy 2 L = �

�1

(N)

) xvy 2 �

�1

(N) = L

3. We de�ne:

 :M ! �

�

=

�

L

m 7! [u℄

�

L

if �(u) = m:

�  is well{de�ned: if �(u) = m = �(v), then u �

�

v and thus

u �

L

v ) [u℄ = [v℄

In addition, for every m there is a u with �(u) = m sin
e � was

assumed to be surje
tive.

�  is surje
tive sin
e for every [u℄ we 
an take m := �(u), and then

 (m) = [u℄.

� Obviously  is a homomorphism

Thus, �

�

=

�

L

is a homomorphi
 image of M 2 V , and thus �

�

=

�

L

2 V

Proposition 1.22 Let V be an M{variety. Then L(V ) is 
losed under in-

terse
tion, union and 
omplement.

Proof: It is enough to show 
losure under interse
tion and 
omplement.

1. 
omplement: M

L

=M

�

�

nL

Sin
e: M

L

= �

�

=

�

L

and M

�

�

nL

= �

�

=

�

�

�

nL

However: �

L

=�

�

�

=

L

sin
e xuy 2 L i� xvy 2 L

is equivalent to: xuy 62 L i� xvy 62 L.
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2. interse
tion: assume that �

�

=

�

L

2 V and �

�

=

�

L

0

2 V (i.e. L; L

0

2

L(V )

�

)

Consider the homomorphism

� : �

�

! �

�

=

�

L

: u 7! [u℄

�

L

�

0

: �

�

! �

�

=

�

L

0

: u 7! [u℄

�

L

0

We know (proof of Corollary 1.13) that, for N = �(L), N

0

= �

0

(L

0

), we

have L = �

�1

(N) and L

0

= �

0

�1

(N

0

).

We de�ne

 : �

�

! �

�

=

�

L

� �

�

=

�

L

0

2 V ! (
losure under produ
t)

u 7! (�(u); �

0

(u))

This is a homomorphism and we have

 

�1

(N �N

0

) = fu 2 �

�

j �(u) 2 N and �

0

(u) 2 N

0

g

= �

�1

(N) \ �

0

�1

(N

0

)

= L \ L

0

This shows that L \ L

0

is a

epted by �

�

=

�

L

� �

�

=

�

L

0

. Sin
e �

�

=

�

L

�

�

�

=

�

L

0

2 V , Lemma 1.21 implies that M

L\L

0

2 V and thus L \ L

0

2

L(V )

�

.

Sometimes it is more appropriate to look at semigroups instead of monoids:

Semigroup: has a binary asso
iative operation (no unit element is required)

Most of the notions and results 
an be transferred from monoids to semi-

groups.

Synta
ti
 semigroup:

The synta
ti
 
ongruen
e �

L

is also a 
ongruen
e on the free semigroup

�

+

= �

�

n f�g. For a language L � �

�

the synta
ti
 semigroup is �

+

=

�

L

.

Alternatively: The synta
ti
 semigroup is the transition semigroup fÆ

w

j w 2

�

+

g of the minimal automaton for L.

A S{Variety S is a 
lass of �nite semigroups that is 
losed under dire
t

produ
t, homomorphi
 images and building subsemigroups.
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Note: Even if 1 2 S, it need not to be in its subsemigroups.

S{varieties 
an also be ultimately de�ned by equations (Prop. 1.20 holds in

a semigroup variant 1.20s). The equations may not 
ontain 1.

Note: S{varieties sometimes yield a more �ne{grained division into 
lasses.

For example: the equation xy = y

Only trivial monoids (i.e. monoids of 
ardinality 1) satisfy this equation.

In fa
t, let m 2M : m = 1 �m = 1

Nontrivial semigroup satisfying xy = x:

� a b

a a a

b b b

� is asso
iative

Corresponding 
lass of languages

If V is an S{variety, then L(V )

�

= fL � �

�

j S

L

2 V g

Lemma 1.21 and Prop. 1.22 also hold in semigroup variants 1.21s and 1.22s.

1.3 Regular languages and logi
al formulae

Whi
h logi
? For the moment, �rst order predi
ate logi
.

Syntax: extra logi
al symbols are

= , < , P

1

; : : : ; P

k

binary binary unary symbols

Semanti
s: we 
onsider �nite interpretations only (for the moment)

= is interpreted as equality,

< is a total ordering (linear ordering) on the domain

P

1

; : : : ; P

k

are interpreted as subsets of the domain.

Su
h interpretations 
an be viewed as words over � = f0; 1g

k

Let I be an interpretation.
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� dom(I) = fd

1

; : : : ; d

n

g for some n � 1 where d

1

< d

2

< � � � < d

n

.

� P

j

is interpreted as a set P

I

j

� dom(I)

� Let �

i

= (b

i1

; : : : ; b

ik

) where

b

i

j

=

�

1 d

i

2 P

I

j

0 d

i

62 P

I

j

Then I 
orresponds to the word �

1

�

2

� � ��

n

. Conversely, every su
h word

yields an interpretation.

Example 1.23 k = 2, i.e. � = f0; 1g

2

The word

�

1

0

� �

0

1

� �

1

0

�

over � 
orresponds to the interpretation

� dom(I) = fd

1

; d

2

; d

3

g

� d

1

< d

2

< d

3

� P

I

1

= fd

1

; d

3

g

� P

I

2

= fd

2

g

Instead of interpretations, we will use words. Thus it makes sense to say that

a word w 2 �

+

makes a formula ' true (w j= ').

De�nition 1.24 Let ' be a 
losed formula (no free variables) of �rst{order

predi
ate logi
 using the extra{logi
al symbols =; <; P

1

; : : : ; P

k

. Let � =

f0; 1g

k

. Then ' de�nes the language

L(') = fw 2 �

+

j w j= 'g:

Note: Sin
e interpretations must have non{empty domains, the empty word

does not des
ribe an interpretation, and L(') � �

+

. This is not a real

restri
tion. For example, L � �

�

is regular i� L n f�g is regular.
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Example 1.25 k = 1, i.e. � = f0; 1g. The language 1

�

10

�

is de�ned by the

following formula:

9x (P

1

(x) ^ 8y (y < x) P

1

(y)) ^ 8z (x < z ) :P

1

(z)))

Proposition 1.26 Boolean operations in formulae 
orrespond to Boolean

operations on languages:

L(:') = �

+

n L(');

L(' ^  ) = L(') \ L( );

L(' _  ) = L(') [ L( ):

In order to de�ne languages, we will introdu
e some useful abbreviations:

Q

�

(x) For every � 2 � we 
an 
onstru
t a formula Q

�

(x) with one free

variable that says that � o

urs at position x.

e.g. k = 2; � =

8

<

:

0

�

0

0

1

A

;

0

�

0

1

1

A

;

0

�

1

0

1

A

;

0

�

1

1

1

A

9

=

;

Q

(1;1)

(x) := P

1

(x) ^ P

2

(x), Q

(1;0)

(x) := P

1

(x) ^ :P

2

(x)

Min(x) We 
an 
onstru
t a formula Min(x) that says that x is the �rst

position of the word.

Min(x): :9y (y < x).

Max(x) Correspondingly we 
an express the last position by a formula

Max(x).

Max(x): 8y (y � x)

Su

(x; y) y is the su

essor position of x:

Su

(x; y): x < y ^ :9z (x < z ^ z < y).

s(x) Sometimes it is more 
onvenient to use a fun
tion symbol to express

the su

essor:

\s(x) = y" 
orresponds to Su

(x; y) _ (Max(x) ^ x = y)
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min, max Correspondingly we will sometimes use 
onstants min, max for

the �rst and the last position

Pred(x; y) Just like su

essor we 
an introdu
e prede
essor as formula Pred(x; y)

or as fun
tion p.

Example 1.27 The regular language a(ba)

�


an be de�ned through

Q

a

(min)^

8x; y (Q

a

(x) ^ Su

(x; y)) Q

b

(y))^

8x; y (Q

b

(x) ^ Su

(x; y)) Q

a

(y)^

Q

a

(Max):

What kind of languages 
an be de�ned with formulae from �rst order pred-

i
ate logi
 (PL1)? We will see later on that only regular languages 
an be

de�ned this way. Can all regular languages be de�ned with PL1{formulae?

No!

Example 1.28 L = a(aa)

�

is regular, but it 
annot be de�ned using a PL1{

formula. We will see later on how this 
an be proved. (The 
onne
tion to

monoids be
omes important.)

How 
an we extend PL1 to get all regular languages?

One has to introdu
e:

Quanti�
ation over unary predi
ates

� Variables for unary predi
ates: X; Y 
apital letters

� Variables for obje
ts: x; y lower 
ase letters

The language a(aa)

�

is de�ned by the formula

9X9Y (X(min) ^

8x; y (X(x) ^ Su

(x; y)) Y (y)) ^

8x; y (Y (x) ^ Su

(x; y)) X(y)) ^

X(max) ^ 8x(X(x), :Y (x)) ^

8x Q

a

(x)):
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We will show that adding quanti�
ation over unary predi
ates gives us ex-

a
tly the regular languages.

Chapter 3 will be 
on
erned with the 
lass of languages de�ned by PL1{

formulae.

Chapter 2 is a warm{up exer
ise where we 
onsider a smaller 
lass of lan-

guages, whi
h 
an be de�ned using quanti�er{free PL1{formuale.
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Chapter 2

Generalized{de�nite languages

and quanti�er{free formulae

First we introdu
e the 
lass of languages dire
tly. Then we 
hara
terize it

using semigroups and formulae.

2.1 Generalized{de�nite languages

Informally, these are languages su
h that there is a k su
h that only the �rst

and last k letters of ea
h word are relevant.

De�nition 2.1 The 
lass B

0

of all generalized{de�nite languages is de�ned

as follows: L � �

�

belongs to (B

0

)

�

i� there is a k � 0 su
h that we have

for all w 2 L:

if w = uv = v

0

u

0

for juj = ju

0

j = k, then u�

�

\ �

�

u

0

� L.

Note that u�

�

\ �

�

u

0


onsists of the words starting with u and ending with

u

0

Whether a word belongs to L or not depends only on the last and �rst k

letters.
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Lemma 2.2 (B

0

)

�

is the Boolean 
losure of the languages:

fu�

�

j u 2 �

�

g [ f�

�

u

0

j u

0

2 �

�

g

Proof:

1. Let L 2 (B

0

)

�

and let k be the 
orresponding number from Def. 2.1.

(a) k = 0:

Thus L = ; or L = �

�

.

In the se
ond 
ase �

�

= ��

�

and in the �rst ; = u�

�

\ u�

�

for an

arbitrary u

(b) k > 0:

L =

[

juj=k=ju

0

j

u�

�

\�

�

u

0

�L

(u�

�

\ �

�

u

0

) [ fv 2 L j jvj < kg:

\�" is trivial.

\�" Let w 2 L. If jwj < k, then w 2 fv 2 L j jvj < kg. Assume

that jwj � k. Thus there exist words u; u

0

; v; v

0

su
h that

juj = ju

0

j = k and w = uv = v

0

u

0

. By the de�nition of (B

0

)

�

,

w 2 L implies u�

�

\ �

�

u

0

� L. Thus, u�

�

\ �

�

u

0

is in the

union and obviously w 2 u�

�

\ �

�

u

0

It remains to show that fv 2 L j jvj < kg is in the Boolean 
losure.

It is enough to show that fvg is in the Boolean 
losure

fvg = v�

�

n v��

�

= v�

�

n (

[

�2�

v��

�

)

2. (a) We show L = w�

�

2 (B

0

)

�

. Take k = jwj.

Assume that w

0

2 L and that w

0

= uv = v

0

u

0

for juj = ju

0

j = k.

But then u = w and thus u�

�

\ �

�

u

0

� u�

�

= w�

�

= L

(b) The 
ase L = �

�

w 
an be treated analogously.

(
) 
losure under union:

L

1

2 (B

0

)

�

with number k

1

and L

2

2 (B

0

)

�

with number k

2

. We


hoose k = maxfk

1

; k

2

g. Note: u = u

1

u

2

) u

1

�

�

� u�

�

Using this fa
t, it is easy to show that k is the right number for

L

1

[ L

2

.
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(d) 
losure under 
omplement:

Let L 2 (B

0

)

�

and let k be the 
orresponding number. But then

k also works for L. Let w = uv = v

0

u

0

2 L where juj = ju

0

j = k.

We show u�

�

\ �

�

u

0

� L.

Assume, that there is a w

0

2 u�

�

\�

�

u

0

su
h that w

0

2 L. But this

implies u�

�

\�

�

u

0

� L. But then w 2 L, whi
h is a 
ontradi
tion.

2.2 The 
orresponding S{variety

To de�ne this S{variety we need the notion of an idempotent element.

De�nition 2.3 Let S be a semigroup. The element e 2 S is idempotent i�

e � e = e.

Unit elements are obviously idempotent, but there may be other idempotents

as well.

Proposition 2.4 Let S be a �nite semigroup and m 2 S. Then the set

fm;m

2

; m

3

; : : :g 
ontains an idempotent element.

Proof: Sin
e S is �nite, there are i; k � 1 su
h that m

i

= m

i+k

:

m

-

m

2

-

� � �

-

m

i

j

m

i+1

-

m

i+2

6

� � �

�

m

i+k�1

�

Obviously there is an ` su
h that

� ` � 0(k), i.e. 9`

0

:(` = k`

0

).

� i � ` < i + k, i.e. ` = i+ p for some p, 0 � p < k
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Claim: m

`

is idempotent

m

`

�m

`

k � `

0

= l;

i+ p = `

= m

i

�m

k�`

0

�m

p

m

i+k

=m

i

= m

i

�m

p

= m

`

:

Note: ifm

i

; m

i+1

; : : : ; m

i+k�1

are di�erent from ea
h other (i.e. k was 
hosen

minimal), then fm

i

; m

i+1

; : : : ; m

i+k�1

g is a 
y
li
 group with unit elementm

`

.

For a given semigroup S we want a number �n su
h that m

�n

is idempotent

for all m 2 S.

Corollary 2.5 Let S be a �nite semigroup and jSj � n. Then we have for

all m 2 S and n = l
m(1; : : : ; n): m

n

is idempotent.

Proof: Obviously one obtains in the proof of Prop. 2.4 a k su
h that i+k�

1 � n. Thus, ` � n and hen
e ` is a divisor of n, i.e. there is an `

0

su
h that

n = ` � `

0

. It follows that m

n

= (m

`

)

`

0

= m

`

.

De�nition 2.6 The 
lass

b

ID 
onsists of all �nite semigroups S that satisfy

the following: for all idempotent e 2 S we have eSe = e.

(i.e. feme j m 2 Sg = feg)

(i.e. 8m 2 S : eme = e)

Proposition 2.7

b

ID is an S{variety, whi
h is ultimately de�ned by

(�)(x

n

yx

n

= x

n

)

n�1

:

Proof: it is enough to show that ID is ultimaltely de�ned by (�)

1. Let S 2

b

ID. By Corollar 2.5 we know that for n � jSj and m 2 S

we have m

n

is idempotent. By the de�nition of

b

ID it follows that

m

n

m

0

m

n

= m

n

for all m

0

2 S. Thus S satis�es (�) for all n � jSj.

2. Assume that S satis�es (�) for some n. Then we have for all idempo-

tents e and all m 2 S:

eme = e

n

me

n

= e

n

= e, and thus eSe = e
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Lemma 2.8 Let S 2

b

ID.

1. If n > jSj and m

1

; : : : ; m

n

2 S, then m

1

� � � � �m

n

is idempotent.

2. if e; f 2 S are idempotent and m 2 S, then emf = ef .

Proof:

1. Consider m

1

; m

1

m

2

; m

1

m

2

m

3

; : : : ; m

1

� � �m

n

. Sin
e n > jSj there are

i < j su
h that m

1

� � �m

i

= m

1

� � �m

i

m

i+1

� � �m

j

. By Prop. 2.4 there

is an ` su
h that (m

i+1

� � �m

j

)

`

is idempotent. But then

m

1

� � �m

n

= (m

1

� � �m

i

)(m

i+1

� � �m

j

)(m

j+1

� � �m

n

)

= (m

1

� � �m

i

)(m

i+1

� � �m

j

)

`

(m

j+1

� � �m

n

)

= (m

1

� � �m

i

) (m

i+1

� � �m

j

)

`

| {z }

e

(m

j+1

� � �m

n

)(m

1

� � �m

i

)

| {z }

2S

�

(m

i+1

� � �m

j

)

`

| {z }

e

(m

j+1

� � �m

n

)

= (m

1

� � �m

i

)(m

i+1

� � �m

j

)(m

j+1

� � �m

n

)

(m

1

� � �m

i

)(m

i+1

� � �m

j

)(m

j+1

� � �m

n

)

= (m

1

� � �m

n

)(m

1

� � �m

n

):

The se
ond identity holds sin
e m

1

: : : m

i

= m

1

: : :m

i

m

i+1

: : :m

j

.

2. e(mf)

eSe=e

= efe(mf) = e(femf)

fSf=f

= ef .

Proposition 2.9

L(

b

ID) = B

0

;

i.e. for every �nite alphabet � and every L � �

�

we have

S

L

2

b

ID, L 2 (B

0

)

�

:

Proof:
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\(" Let L 2 (B

0

)

�

, i.e. L is in the Boolean 
losure of the languages fu�

�

j

u 2 �

�

g [ f�

�

u

0

j u

0

2 �

�

g (Lemma 2.2). By Prop. 1.22s, L(

b

ID) is


losed under Boolean operations and thus it is suÆ
ient to show that

u�

�

und �

�

u

0

belong to L(

b

ID). We 
onsider L = u�

�

(�

�

u

0


an be

treated symmetri
ally).

Let juj = n.

Case 1: n = 0

Thus u�

�

= �

�

: in this 
ase �

L

= �

�

��

�

, and thus S

L

= �

+

=

�

L


onsist of a single 
lass, whi
h is obviously idempotent. In addi-

tion, S

L

2

b

ID sin
e S

L

= feg and e � e � e = e.

Case 2: n > 0

Claim: If jwj � n, then wv �

L

w, for all v 2 �

�

.

Proof of the 
laim: for all x; y 2 �

�

we have

xwvy 2 L = u�

�

i� xwvy starts with u

i� xw starts with u

(sin
e jwj � n)

i� xwy starts with u

i� xwy 2 L = u�

�

.

Claim

Let e = [x℄

�

L

2 S

L

= �

+

=

�

L

be idempotent.

We must show eS

L

e = e.

Sin
e jxj � 1, we know that jx

n

j � n and thus w := x

n

satis�es

the pre
ondition of the 
laim. Let m = [y℄

�

L

2 S

L

. Then we have

em = e

n

m = [x

n

℄

�

L

�[y℄

�

L

= [x

n

y℄

�

L

by the 
laim

= [x

n

℄

�

L

= e

n

= e:

In parti
ular, this implies eme = ee = e, whi
h shows S

L

2

b

ID.

\)" Let S

L

2

b

ID; n = jS

L

j+ 1. By Lemma 2.8 (1) we have for all words u

of length n that [u℄

�

L

is idempotent:

[u℄

�

L

= [�

1

: : : �

n

℄

�

L

= [�

1

℄

�

L

� � � � � [�

n

℄

�

L

:

Let x 2 L with jxj � 2n. Then x = uvu

0

for words u; v; u

0

with juj =

ju

0

j = n. We know that [u℄

�

L

; [u

0

℄

�

L

are idempotent. By Lemma 2.8
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(2) we have for all words w:

[uwu

0

℄

�

L

= [u℄

�

L

� [w℄

�

L

� [u

0

℄

�

L

= [u℄

�

L

� [u

0

℄

�

L

= [u℄

�

L

� [v℄

�

L

� [u

0

℄

�

L

= [uvu

0

℄

�

L

= [x℄

�

L

Thus, x 2 L implies that u�

�

u

0

� L.

To sum up, this shows the following: if juj = ju

0

j = n, then u�

�

u

0

� L

or u�

�

u

0

� L. Consequently,

L =

[

u�

�

u

0

�L

juj=ju

0

j=n

u�

�

u

0

[ fw 2 L j jwj < 2ng

| {z }

in(B

0

)

�

sin
e singleton fwg2(B

0

)

�

It remains to be shown that u�

�

u

0

2 (B

0

)

�

:

u�

�

u

0

= (u�

�

\ �

�

u

0

)

| {z }

2(B

0

)

�

n fw j jwj < 2ng

| {z }

2(B

0

)

�

2 (B

0

)

�

Corollary 2.10 Let L � �

�

be a regular language (given by a regular

expression or �nite automaton). Then we 
an e�e
tively de
ide whether

L 2 (B

0

)

�

or not.

Proof: Given L � �

�

, we 
ompute its synta
ti
 semigroup S

L

(by 
omputing

the minimal automaton and then its transition semigroup). For this �nite

semigroup we 
an obviously de
ide whether eme = e holds for all idempotents

e 2 S

L

and all elements m 2 S

L

.
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2.3 Quanti�er{free formulae

As extra{logi
al symbols we will use binary relations =, <, unary relations

P

1

; : : : ; P

k

, additionally 
onstants min, max, unary fun
tions s, p. The in-

terpretation of these symbols is �xed as des
ribed in Chapter 1.3.

Note: In Chapter 1.3 we have seen that min, max, s, p 
an be expressed

by formulae using only the other symbols. However these formulae need

quanti�ers. Sin
e we 
onsider quanti�er-free formulae here, we need these

symbols expli
itly.

Proposition 2.11 Let � = f0; 1g

k

. For L � �

�

the following are equivalent:

1. L 2 (B

0

)

�

.

2. L n f�g = L(') for a quanti�er{free 
losed formula ' over the extra

logi
al symbols =, <, P

1

; : : : ; P

k

;min;max; s, and p.

Note: Sin
e f�g 2 (B

0

)

�

, we know that L 2 (B

0

)

�

i� L n f�g 2 (B

0

)

�

.

Proof:

\1! 2" Sin
e the Boolean operations on languages 
an be expressed using

the 
onne
tions ^, _, : it is enough to 
onsider the languages u�

�

and �

�

u

0

.

We 
onsider only the 
ase L = u�

�

.

Formula expressing u�

�

:

Let u = �

1

� � ��

l

for some l � 1.

Q

�

1

(min) ^Q

�

2

(s(min)) ^Q

�

3

(s(s(Min))) ^ : : :

: : : ^Q

�

l

(s

l�1

(min))

^s

l�2

(min) < max (is left out if l = 1)

If u = �, then L = u�

�

= �

�

, and thus L n f�g = �

+

. Thus, we 
an take any

formula that is trivially true; for example, min = min.

\2 ! 1" Let ' be su
h a 
losed quanti�er{free formula. Thus, ' does not


ontain variables. Terms are built using min;max; s; p (e.g.: s(p(s(min)))).
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These terms 
an be normalized into terms of the following form:

s

n

(min); p

n

(max) n � 0

To this purpose, we use the fa
t, that s(max) = max, p(min) = min,

s(p(d)) = d = p(s(d)) unless d is one of the extremal points min;max.

The formula ' is a Boolean 
ombination of atomi
 formulae

P

i

(t); t = t

0

; t < t

0

; where t; t

0

are normalized

Sin
e (B

0

)

�

is 
losed under Boolean operations, it is suÆ
ient to show that

the atomi
 formulae de�ne languages in (B

0

)

�

� P

i

(s

n

(min)) is satis�ed by

{ words of lenghth < n + 1 satisfying some 
onditions

Finite sets of words belong to (B

0

)

�

{ words of length � n + 1 whose (n + 1)th symbol � 2 f0; 1g

k

has

as i{th 
omponent a 1:

[

juj = n

� 2 � with i{th 
omponent 1

u��

�

2 (B

0

)

�

� P

i

(p

n

(max)) 
an be treated similarly.

� formulae t = t

0

, t < t

0

are either true for all words (�

+

is in (B

0

)

�

) or

they restri
t the length of the words:

{ s

n

(min) = s

m

(min) for n < m says that the word has length

� n+ 1. Finite sets of words belong to (B

0

)

�

.

{ s

n

(min) < s

m

(min) for n < m says that the word is of length

> n + 1. The 
omplement is a �nite set of words.

All other 
ases 
an be treated similarly!
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Star{free languages

These are the languages de�nable by PL1{formulae.

3.1 The 
lass of languages

The 
lass of regular languages is the smallest 
lass that 
ontains all �nite

languages and that is 
losed under

� union (L

1

[ L

2

),

� 
on
atenation (L

1

� L

2

) und

� star (L

�

)

Disallowing star here would leave us only with �nite languages. This ist a

small 
lass stri
tly 
ontained in (B

0

)

�

. We know that regular languages are

also 
losed under \ and

�

. We now disallow

�

, but expli
itly allow \ and

�

.

De�nition 3.1 For a �nite alphabet �, the 
lass SF

�

of all star{free lan-

guages over � is the smallest 
lass that satis�es:

� all �nite languages over � belong to SF

�

38 Mar
h 3, 2005



3.2. APERIODIC MONOIDS

� if L; L

1

; L

2

2 SF

�

, then so are L

1

� L

2

, L

1

[ L

2

L

1

\ L

2

, L = �

�

n L

Example 3.2

1. �

�

2 SF

�

sin
e �

�

= ; and ; is �nite.

2. If � � �, then �

�

2 SF

�

sin
e �

�

= �

�

n (�

�

� (� n�) � �

�

)

3. � = fa; bg Then a(ba)

�

2 SF

�

sin
e

a � (ba)

�

= a � (�

�

n (a�

�

[ �

�

b [ �

�

aa�

�

[ �

�

bb�

�

))

The example shows that languages whose straight{forward representation

uses star may well be star{free.

How 
an we de
ide, for a given regular language, whether it is star{free or

not? More 
on
retely: how 
an we show that a(aa)

�

is not star{free?

These questions 
an be answered by looking at a 
hara
terization of star{free

languages using �nite monoids.

3.2 Aperiodi
 monoids

In 
hapter 2 we have seen that for an element m of a �nite semigroup the

set fm;m

2

; m

3

; : : :g always 
ontains an idempotent:

m

-

m

2

-

� � �

-

m

i

j

m

i+1

-

m

i+2

6

� � �

�

m

i+k�1

�

For aperiodi
 monoids, we 
an 
hoose k = 1.

De�nition 3.3 The �nite monoid M is 
alled aperiodi
 i� there is an n � 1

su
h that m

n+1

= m

n

holds for all m 2M .
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Obviously the 
lass Ap of aperiodi
 monoids is ultimately de�ned by

(x

n+1

= x

n

)

n�1

:

Note: If m

n+1

= m

n

, then m

n

0

+1

= m

n

0

for all n

0

� n. This shows that Ap

is an M{variety.

Re
all: if m

i

= m

i+k

, then m

i

; m

i+1

; : : : ; m

i+k�1

is a group. If k is minimal,

this group 
ontains k elements.

De�nition 3.4 Let (M; �; 1) be a monoid. The subset G �M is a group in

M i� G is a subsemigroup of M (m;m

0

2 G! m �m

0

2 G) that is a group

w.r.t. the operation � of M restri
ted to G.

Note: The unit of the group G is an idempotent element of M , but it need

not to be the unit 1 of M .

For aperiodi
 monoids, the 
y
li
 groups fm

i

; : : : ; m

i+k�1

g have 
ardinality

1. This is true for all groups in M .

Proposition 3.5 The �nite monoidM is aperiodi
 i� it 
ontains only trivial

groups (i.e. groups of 
ardinality 1).

Proof: (x

n+1

= x

n

)

n�1

\)" Let M be aperiodi
 and let n be su
h that m

n+1

= m

n

for all m 2M .

Assume that G � M is a group in M with jGj > 1. Thus G 
ontains

in addition to its unit element e another element g 6= e. We know that

g

n+1

= g

n

. By multiplying this equation with (g

n

)

�1

, we obtain g = e.

\(" Let m 2M . We 
onsider fm;m

2

; m

3

: : :g. Let k be minimal su
h that

there is an i withm

i+k

= m

i

. Then we know that fm

i

; m

i+1

; : : : ; m

i+k�1

g

is a group in M , and thus k = 1 sin
e M 
ontains only trivial groups.

Thus we have for all m 2M an i

m

� 1 su
h that m

i

m

+1

= m

i

m

. Obvi-

ously, m

j+1

= m

j

for all j � i

m

. Thus, if n � maxfi

m

j m 2 Mg then

m

n+1

= m

n

holds for all m 2 M .
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We are interested in aperiodi
 monoids sin
e the 
orrespond to star{free

languages.

Proposition 3.6 (S
h�utzenberger) L(Ap) = SF , i.e. for all L � �

+

:

M

L

2 Ap i� L 2 SF

�

:

The proof (in parti
ular of \)") is rather involved (see Automata, Languages,

and Ma
hines).

Corollary 3.7 Let L � �

�

a regular language (given by regular expression,

�nite automaton, . . . ). Then it is de
idable whether L 2 SF

�

or not.

Proof: Constru
t the synta
ti
 monoid M

L

, and then test whether it is

aperiodi
.

Example 3.8 Let � = fag. Then a(aa)

�

=2 SF

�

.

Proof: The minimal automaton for L = a(aa)

�

is

-

1

-

a

�

a

2

Transition monoid

Æ

�

=

1 2

1 2

Æ

a

=

1 2

2 1

Æ

aa

= Æ

�

Thus M

L

= fÆ

�

; Æ

a

g with unit element Æ

�

and Æ

a

Æ Æ

a

= Æ

�

. Consequently M

L

itself is a group of 
ardinality > 1. Thus M

L

is not aperiodi
.
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3.3 Formula of �rst{order{logi


We will show that the star{free languages are exa
tly the ones de�nable by

�rst order formulae.

Proposition 3.9 For a language L � �

+

the following are equivalent

1. L 2 SF

�

.

2. L = L(') for a 
losed formula ' of �rst{order predi
ate logi
 using the

extra logi
al symbols =, <, Q

a

(a 2 �).

Note: Instead of P

1

; : : : ; P

k

we use Q

a

for a 2 � dire
tly. This is just for


onvenien
e.

The proof of \1! 2" is rather simple, whereas \2! 1" is more involved.

3.3.1 Proof of \1! 2" of Theorem 3.9

Star{free languages are obtained from the �nite languages using Boolean

operations and 
on
atenation.

Finite languages

Obviously, it is suÆ
ient to 
onsider singleton sets fwg for w 2 �

+

. Let

w = a

1

� � �a

n

2 �

+

.

'

w

: 9x

1

; : : : ; x

n

Q

a

1

(x

1

) ^ : : : ^Q

a

n

(x

n

) ^

n�1

^

j=1

�

x

j

< x

j+1

^ :9z (x

j

< z ^ z < x

j+1

)

�

^

:9z (z < x

1

_ x

n

< z)

Obviously, L('

w

) = fwg.
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Boolean operations

Boolean operations 
orrespond to the logi
al 
onne
tives ^, _, : (by Prop. 1.26).

Con
atenation

Con
atenation 
orresponds to the existential quanti�er (in prin
iple).

First, let us 
onsider an example: L

1

:= a

+

and L

2

:= b

+

'

1

: 8x:Q

a

(x) is a formula de�ning L

1

and

'

2

: 8x Q

b

(x) is a formula de�ning L

2

A formula for L

1

� L

2

:

9z (8x (x � z ) Q

a

(x)) ^ 8x (x > z ) Q

b

(x)) ^ 9z

0

z

0

> z)

The quanti�er in '

1

is relativized to the position � z and the one in '

2

to

the position > z. In general, the relativization '

�z

of ' to the position � z

is de�ned as follows:

� ( 

1

^  

2

)

�z

=  

�z

1

^  

�z

2

� ( 

1

_  

2

)

�z

=  

�z

1

_  

�z

2

� (: )

�z

= :( 

�z

)

� (9x  (x))

�z

= 9x (x � z ^  (x)

�z

)

� (8x  (x))

�z

= 8x (x � z )  (x)

�z

)

(where we assume that � does not o

ur in the formula.)

The relativization '

�z

is de�ned analogously.

Assume that L = L

1

�L

2

� �

+

and that L

1

and L

2

are star{free. If L

1

; L

2

2

�

+

then we know by indu
tion that there are formulae '

1

and '

2

with

L

1

= L('

1

); L

2

= L('

2

). Then L

1

� L

2

= L (9z ('

�z

1

^ '

�z

2

^ 9z

0

z < z

0

))

If say L

2


ontains ", then L

1

� L

2

= L

1

� (L

2

n f"g) [ L

1

.

Mar
h 3, 2005 43



CHAPTER 3. STAR{FREE LANGUAGES

3.3.2 Proof of \2! 1" of Theorem 3.9

To show that every 
losed formula of PL1 de�nes a star{free language we

want to use indu
tion over the quanti�er{depth of the formula, i.e. the max-

imal nesting of quanti�ers in the formula (every 
losed formula 
ontains at

least one quanti�er.).

Sin
e we have negation, we may assume that the formula 
ontains only exis-

tential quanti�ers.

Sin
e the 
onne
tives ^;_;: 
orrespond to \;[;

�

of languages, it is suÆ
ient

to 
onsider formulae of the form 9x '(x)

Indu
tion base: quanti�er{depth 1

Thus ' does not 
ontain any quanti�ers and sin
e 9x '(x) is 
losed, ' does

not 
ontain variables di�erent from x. We 
an assume without loss of gener-

ality that ' is a positive Boolean 
ombination (only ^;_) of formulae

� Q

a

(x) or :Q

a

(x),

� x < x or :(x < x),

� x = x oder :(x = x).

We assume that ' is in disjun
tive normal form D

1

_ : : : _D

n

. Disjun
t D

i

is of the form C

1

^ : : : ^ C

m

. This 
an be further normalized:

� repla
e x < x, :(x = x) by false, i.e. remove any disjun
t D

j


ontaining

su
h an expression.

� repla
e :(x < x); x = x by true, i.e. remove it from the disjun
t.

� if a disjun
t 
ontains Q

a

(x), then

{ remove the whole disjun
t if it 
ontains :Q

a

(x) or Q

b

(x) for a 6= b

{ otherwise remove from the disjun
t all :Q

b

(x) for b 6= a

Thus, we end up with disjun
ts of the form
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� Q

a

(x),

� :Q

a

1

(x) ^ : : : ^ :Q

a

n

(x).

Sin
e (9x D

1

^ : : : ^D

n

) � 9x D

1

: : :9x D

n

, we 
an restri
t the attention to

� 9x Q

a

(x)

� 9x (:Q

a

1

(x) ^ : : : ^ :Q

a

n

(x))

L(9x Q

a

(x)) = �

�

a�

�

2 SF

�

L(9x (:Q

a

1

(x) ^ : : : ^ :Q

a

n

(x))) = �

�

� (� n fa

1

; : : : ; a

n

g) � �

�

2 SF

�

This 
ompletes quanti�er{depth 1.

Indu
tion step: n! n + 1

Let 9x '(x) be of quanti�er{depth n+1. Before we 
an show that L(9( x)'x)

is star{free, we need some notation and two propositions.

De�nition 3.10 With L

k;n

we denote the set of formulae of PL1 (over the

extra logi
al symbols =, <, Q

a

for a 2 �) having k free variables and

quanti�er{depth � n

Example: ' = 9x (y < x ^ x < z ^Q

a

(x)) belongs to L

2;1

. To interpret this

formula, a word (e.g. baa) is not enough. We must also say how y and z are

interpreted (e.g. y by 1 (�rst position in baa) and z by 3 (third position in

baa)). We say that (baa; 1; 3) satis�es '.

In general, formulae from L

k;n

are interpreted by tuples (w;~s) where w 2 �

+

and ~s = s

1

� � � s

k

with s

i

2 f1; : : : ; jwjg. \(w;~s) satis�es ' 2 L

k;n

" (w;~s) j= '

is de�ned in the obvious way. For k = 0, we dispense with the empty sequen
e

~s.

De�nition 3.11 For n � 0 and k � 0 we de�ne

(w;~s) �

k;n

(v;

~

t) i� for all ' 2 L

k;n

we have

(w;~s) j= ' i� (v;

~

t) j= ':
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Obviously �

k;n

is an equivalen
e relation. For k = 0 we write �

n

in pla
e

of �

0;n

. In this 
ase, we extend �

n

to �

�

by de�ning " �

n

", i.e. f"g is a

�

n

{equivalen
e 
lass.

To proof \2 ! 1" of Theorem 3.9, we need two propositions, whi
h we will

prove in separate subse
tions.

Proposition 3.12 For all n � 0 and k � 0 there is a �nite set �

k;n

� L

k;n

su
h that every element of L

k;n

is equivalent to some element of �

k;n

.

Equivalent means that the formulae are satis�ed by the same tuples (w;~s).

As a simple 
onsequen
e of this proposition we obtain �

k;n

has �nite index.

Corollary 3.13 For all k � 0 and n � 0, �

k;n

has only �nitely many

equivalen
e 
lasses.

Proof: The 
lass of (w;~s) is uniquely determined by the following subset of

�

k;n

:

� = f' 2 �

k;n

j (w;~s) j= 'g

Sin
e there are only �nitely many su
h subsets of �

k;n

, there are only �nitely

many equivalen
e 
lasses.

We 
an extend the notion of the language de�ned by a formula also to formu-

lae with free variables: for ' 2 L

k;n

we de�ne L(') := f(w;~s) j (w;~s) j= 'g.

Corollary 3.14 For all n � 0 and k � 0 and all �

k;n

{
lasses W there is a

formula '

W

2 L

k;n

su
h that W = L('

W

).

Proof:

W = [(w;~s)℄

�

k;n

= L(

^

'2�

k;n

(w;~s)j='

' ^

^

 2�

k;n

(w;~s)6j= 

: )

46 Mar
h 3, 2005
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Corollary 3.15 For all n � 0 and k � 0 and all ' 2 L

k;n

the following

holds: ' is equivalent to a �nite disjun
tion of formulae '

W

for �

k;n

{
lasses

W .

Proof:

' is equivalent to

_

W=[(w;~s)℄

�

k;n

(w;~s)j='

'

W

:

This disjun
tion is �nite sin
e �

k;n

has �nite index.

The se
ond proposition shows a 
onne
tion between �

0;n

and �

1;n

.

Proposition 3.16 Let n � 0; u; v; u

0

; v

0

2 �

�

and a 2 �.

u �

n

u

0

^ v �

n

v

0

) (uav; juj+ 1) �

1;n

(u

0

av

0

; ju

0

j+ 1)

We are now ready to �nish the indu
tion step. Thus, let 9x '(x) be a 
losed

formula of quanti�er{depth n+1. Consequently, '(x) 2 L

1;n

and thus ' is a

�nite disjun
tion '(x) =

W

'

W

(x). Consequently, 9x '(x) is equivalent to

W

9x '

W

(x).

Thus is enough to show L(9x '

W

(x)) are star{free.

Lemma 3.17

L(9x '

W

(x)) =

[

U=[u

0

℄

�

0;n

; V=[v

0

℄

�

0;n

a2� mit(u

0

av

0

;ju

0

j+1)2W

UaV

Proof:

\�"

w 2 L(9x '

W

(x)) i� there exist u; v 2 �

�

su
h that w = uav

and (uav; juj+ 1) j= '

W

(x)

i� there exist u; v 2 �

�

; a 2 � su
h that w = uav

and (uav; juj+ 1) 2 W

Consequently w 2 [u℄a[v℄ and [u℄a[v℄ o

urs in the union on the right{

hand side.
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\�" From (u

0

av

0

; ju

0

j + 1) 2 W it follows that (u

0

av

0

; ju

0

j + 1) j= '

W

(x),

and thus u

0

av

0

2 L(9x '

W

(x)).

It remains to show that for all u �

1;n

u

0

and v �

1;n

v

0

we also have

uav 2 L(9x '

W

(x)).

With Prop. 3.16 we have (u

0

av

0

; ju

0

j + 1) �

1;n

(uav; juj+ 1) and thus

(uav; juj+ 1) 2 W . As above, thus implies uav j= 9x '

W

(x).

By Corollary 3.14, the �

0;n

{
lasses U; V of the lemma are of the form U =

L('

U

), V = L('

V

) for '

U

; '

V

2 L

0;n

or U = f"g or V = f"g. So the

indu
tion hypothesis yields that L('

V

) and L('

U

) are also star{free: Sin
e

star{free languages are 
losed under union and 
on
atenation, L(9x '

W

(x))

is star{free.

3.3.3 Proof of Propositions 3.12 and 3.16

Proposition 3.12 For all n � 0 and k � 0 there is a �nite set �

k;n

� L

k;n

su
h that every element of L

k;n

is equivalent to some element of �

k;n

.

Proof: We prove this proposition by indu
tion on n.

Let ' 2 L

k;n

. Su
h a formula is a Boolean 
ombination of

� elements of L

k;n�1

� formulae of the form 9x  (x; y

1

; : : : ; y

k

) where  (x; y

1

; : : : ; y

k

) 2 L

k+1;n�1

Indu
tion base n = 0: Let k � 0 be arbitrary. A formula '(y

1

; : : : ; y

k

) 2

L

k;0

is a Boolean 
ombination of atomi
 formulae.

(�) Q

a

(x) for a 2 �; x < y; x = y where x; y 2 fy

1

; : : : ; y

k

g:

Without loss of generality, we 
onsider only elements of L

k;0


ontaining

free varibales from fy

1

; : : : ; y

k

g. But then there are only �nitely many

formulae of the form (�). Thus, there are only �nitely many Boolean


ombinations of these formulae (up to equivalen
e).
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Indu
tion step (n� 1! n): Assume that we already have �nite sets �

k;n�1

and �

k+1;n�1

with the desired properties. Thus ' is equivalent to

a Boolean 
ombination of elements of �

k;n�1

and formula 9x  with

 2 �

k+1;n�1

. Thus, up to equivalen
e there are �nitely many su
h

Boolean 
ombinations.

Our proof of Prop. 3.16 will use a game theoreti
 
hara
terization of the

relations �

k;n

.

De�nition 3.18 [Ehrenfeu
ht{Fraiss�e games℄ Let � be a �nite alphabet.

We 
onsider two players I und II, who play on words u; v 2 �

+

. A move


hooses a position in either u or v. Player I has the �rst move and then there

are alternating moves from II and I. If I moves in u then II must answer in

v, and if I moves in v then II must answer in u.

A game of length n 
onsists of n moves of I and of the n answer moves of II.

Let (i

1

; j

1

); : : : ; (i

n

; j

n

) be the 
hosen positions, where i

�

is the position in u

and j

�

the position in v (independent on whi
h player has 
hosen them).

Player II has won this game i� the following holds:

Let u = a

1

: : : a

p

and v = b

1

: : : b

q

. Then:

� a

i

�

= b

j

�

for � = 1; : : : ; n, i.e. at the positions 
hosen in move � we

have the same letter.

� i

�

< i

�

0

i� j

�

< j

�

0

, i.e. the relative pla
ement of the positions must be

the same.

Otherwise, II has lost and I has won.

Example 3.19 n = 3

Let � = fag. Thus only the order of the 
hosen positions is relevant.

1 2 3 4 5 6 7

u = a a a a a a

I,2 II,1

v = a a a a a a a

II,2 I,1
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II; 1 on 5 or 6 would let I win the game by pla
ing �rst 6 in v and then 7 in

v. II; 2 
ould have also 
hosen 3 in v instead of 2

Whereever I moves in the third move, II 
an answer appropriately and thus

II wins.

Example 3.20 n = 3; � = fa; bg

1 2 3 4

u = b b a b

I,3 I,2 I,1

v = b a b b

II,2 II,1

II; 1 must 
hoose the a in v and II,2 must 
hoose the b to the left of a in v.

II 
annot answer the third move of I appropriately.

De�nition 3.21 Let n � 1 and u; v 2 �

+

. We say that II has a winning

strategy for games of length n on u; v i� II 
an answer all possible moves of

I su
h that II wins.

To be able to use indu
tion arguments, we will also 
onsider games, that

have already started.

Let u; v 2 �

+

and ~s = s

1

: : : s

k

2 f1; : : : ; jujg

k

and

~

t = t

1

: : : t

k

2 f1; : : : ; jvjg

k

.

Then the pair (u;~s) and (v;

~

t) des
ribes a game where already k moves have

been made by ea
h player. A game of length n on this pair is a 
ontinuation

of this game by n moves. Player II wins this 
ontinuation game i� II wins

the whole game.

De�nition 3.22 Let (u;~s) and (v;

~

t) be given where u; v 2 �

+

and ~s 2

f1; : : : ; jujg

k

,

~

t 2 f1; : : : ; jvjg

k

.

(u;~s) �

k;n

(v;

~

t) i� II has a winning strategy for games of

length n on (u;~s) and (v;

~

t).

For k = 0 we extend �

0;n

to �

�

by making f�g a �

0;n

{
lass.

Lemma 3.23 �

k;n

is an equivalen
e relation.
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Proof:

re
exive: game played on (u;~s) and (u;~s). II just simulates the moves of I.

symmetri
: 
lear sin
e I 
an move in both words.

transitive: Let WS1 be the strategy that shows (u;~s) �

k;n

(v;

~

t) and WS2

be the strategy that shows (v;

~

t) �

k;n

(w;~r). The winning strategy for

II on (u;~s) and (w;~r) works as follows:

� if I moves in u, then II answers �rst with WS1 in v, and then to

this move with WS2 in w.

� if I moves in w, then II answers with WS2 in v, and to this move

with WS1 in u

We will show �

k;n

= �

k;n

.

For �

k;n

, the 
orresponding statement of Prop. 3.16 
an easily be proved:

Lemma 3.24 Let n � 0, u; v; u

0

; v

0

2 �

�

and a 2 �.

u �

0;n

u

0

^ v �

0;n

v

0

) (uav; juj+ 1) �

1;n

(u

0

av

0

; ju

0

j+ 1)

Proof: We 
onsider the 
ase where u; v; u

0

; v

0

2 �

+

. (The other 
ases 
an

be treated analogously.)

Let WS1 be the startegy that yields u �

0;n

u

0

and WS2 the strategy that

yields v �

0;n

v

0

.

If I moves in u (u

0

), then II answers with WS1 in u

0

(u).

If I moves in v (v

0

), then II answers with WS2 in v

0

(v).

If I moves juj + 1 in uav (ju

0

j + 1 in u

0

av

0

), then II answers u

0

+ 1 in u

0

av

0

(juj+ 1 in uav).

Obviously, this yields a winning strategy for II on (uav; juj+1) and (u

0

av

0

; ju

0

j+

1)

Mar
h 3, 2005 51



CHAPTER 3. STAR{FREE LANGUAGES

To prove Proposition 3.16, it is enough to show that �

k;n

and �

k;n


oin
ide.

First, an intuitive argument. The 
han
es for II to win are the greater the

more similar the tuples are. If they are in the relation �

k;n

they 
annot be

distinguished by formulae of quanti�er{depth n, and are thus similar.

The 
onne
tion between quanti�er{depth and the number of moves is also

quite 
lear: 9x '(x) says that there exists a position with 
ertain porperties.

A move pi
ks a position.

Lemma 3.25 For all n; k � 0 we have

�

k;n

= �

k;n

i.e. (u;~s) �

k;n

(v;

~

t) i� (u;~s) �

k;n

(v;

~

t).

Proof: by indu
tion on n

Indu
tion base n = 0: Let (u;~s) and (v;

~

t) be given.

1. Assume that (u;~s) �

k;0

(v;

~

t). Assume that the free variables are from

the set fy

1

; : : : ; y

k

g where y

i


orresponds to the i{th 
omponent in ~s

and

~

t. Let u = a

1

� � �a

p

, v = b

1

� � � b

q

. For the atomi
 formulae y

i

< y

j

,

y

i

= y

j

, Q

a

(y

i

), the equivalen
e (u;~s) �

k;0

(v;

~

t) implies that (u;~s) and

(v;

~

t) behave the same on these formulae:

a) (u;~s) j= y

i

< y

j

i� (v;

~

t) j= y

i

< y

j

(�) b) (u;~s) j= y

i

= y

j

i� (v;

~

t) j= y

i

= y

j


) (u;~s) j= Q

a

(y

i

) i� (v;

~

t) j= Q

a

(y

i

)

This is equivalent to saying

a) s

i

< s

j

i� t

i

< t

j

(��) b) s

i

= s

j

i� t

i

= t

j


) a

s

i

= a i� b

t

i

= a

However, a) and 
) of (��) is exa
tly the 
ondition that II has won the

game (without additional moves sin
e n = 0). And thus (u;~s) �

k;0

(u;

~

t).
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2. Conversely, assume that (u;~s) �

k;0

(v;

~

t). Consequently II has won

the game (without additional moves). This shows that a) and 
) of

(��) hold. Condition b) follows from a) sin
e < is a total ordering.

This yields a) b) 
) of (�), and thus (u;~s) and (v;

~

t) behave the same

on atomi
 formulae. Thus, they behave the same on their Boolean


ombinations, whi
h are all the elements of L

k;0

. This shows (u;~s) =

k;0

(v;

~

t).

Indu
tion step n! n+ 1:

1. Assume that (u;~s) �

k;n+1

(v;

~

t). Let '(y

1

; : : : ; y

k

) 2 L

k;n+1

and assume

that (u;~s) j= '. It is suÆ
ient to show that this implies (v;

~

t) j= '.

Sin
e Boolean operators are unproblemati
, it is enough to assume that

' is of the form ' = 9y

k+1

 (y

1

; : : : ; y

k

; y

k+1

) where  2 L

k+1;n

.

Sin
e (u;~s) �

k;n+1

(v;

~

t), II 
an answer appropriately the �rst move of

I. Thus, for every s

k+1

2 f1; : : : ; jujg there is a t

k+1

2 f1; : : : ; jvjg su
h

that

(u;~ss

k+1

) �

k+1;n

(v;

~

tt

k+1

):

Indu
tion yields that for all s

k+1

there exists a t

k+1

su
h that

(u;~ss

k+1

) �

k+1;n

(v;

~

tt

k+1

) (�)

Sin
e (u;~s) j= 9y

k+1

 (y

1

; : : : ; y

k

; y

k+1

) there is an s

k+1

with

(u;~ss

k+1

) j=  (y

1

; : : : ; y

k

; y

k+1

) (��)

Let t

k+1

be su
h that (�) holds. Sin
e  2 L

k+1;n

, (�) and (��) imply

(v;

~

tt

k+1

) j=  (y

1

; : : : ; y

k

; y

k+1

):

This shows that

(v;

~

t) j= 9y

k+1

 (y

1

; : : : ; y

k

; y

k+1

):

2. Assume that (u;~s) 6�

k;n+1

(v;

~

t). We are looking for a formula ' 2

L

k;n+1

su
h that ' is satis�ed by one of the two tuples (u;~s) and (v;

~

t),

but not by the other one.
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Sin
e (u;~s) 6�

k;n+1

(v;

~

t), there is a �rst move of I that II 
annot answer

appropriatly (i.e. after the �rst move II still does not have a winning

strategy). Without loss of generality we assume that this �rst move is

in u. Thus there is an s

k+1

su
h that for all t

k+1

we have

(u;~ss

k+1

) 6�

k+1;n

(v;

~

tt

k+1

):

Indu
tion yields:

(u;~ss

k+1

) 6�

k+1;n

(v;

~

tt

k+1

):

We now �x this s

k+1

. For all t

k+1

there is thus a formula  

t

k+1

(y

1

; : : : ; y

k+1

) 2

L

k+1;n

su
h that

(u;~ss

k+1

) j=  

t

k+1

(�)

(v;

~

tt

k+1

) 6j=  

t

k+1

(��)

From (�) it follows that '

t

k+1

:= 9y

k+1

 

t

k+1

satis�es (u;~s) j= '

t

k+1

.

Unfortunately, (��) does not imply (v;

~

t) 6j= '

t

k+1

. The reason is that

there may be a t 6= t

k+1

su
h that (v;

~

tt) j=  

t

k+1

.

Instead of '

t

k+1

we 
onsider the formula

' := 9y

k+1

^

1�t

k+1

�jvj

 

t

k+1

(3.1)

Be
ause of (�) we know that (u;~s) j= '. Be
ause of (��), for every t

k+1

there is one 
onjun
t in ' that is not satis�ed if we substitute y

k+1

by

t

k+1

. Thus (v;

~

t) 6j= '.

Note: Lemma 3.25 also holds for in�nite words. To obtain a �nite 
onjun
-

tion in the de�nition of ' in (3.1), one uses the fa
t that every formula in

L

k+1;n

is equivalent to a formula in the �nite set �

k+1;n

.

This �nishes the proof of Theorem 3.16. Sin
e not all regular languages

are star{free (example a(aa)

�

) there are regular languages that 
annot be

de�ned by formulae of PL1. To obtain all regular languages, we must add

quanti�
ation over unary predi
ates (see Example 1.28). We will not show

this here, but later on we will show it for the 
ase of in�nite words.
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Simple appli
ation: a de
idability result in logi


Theory of linear orderings

Lin =

f 8x8y8z(x < y ^ y < z ! x < z)

8x :(x < x)

�

stri
t partial order

8x 8y (x < y _ x = y _ y < x) g linear

Proposition 3.26 Let ' be a 
losed formula of PL1 that 
ontains only the

extra{logi
al symbols <;=; P

1

; : : : P

n

(unary). Then it is de
idable whether

Lin [ f'g has a �nite model.

Proof: We know that L(') is a star{free language. The proof of Theo-

rem 3.9 is 
onstru
tive, i.e., given a formula ', we 
an e�e
tively 
onstru
t

a star{free expression (using �nite languages, Boolean operations, and 
on-


atenation) for L('). In prin
iple, this is due to the fa
t that the �nite set

�

k;n

from Prop 3.12 
an e�e
tively be 
onstru
ted (and thus the �

k;n

{
lasses,

the formula '

W

, : : :)

It is easy to see that L(') 6= ; i� Lin [ f'g has a �nite model. The star{

free expression for L(') 
an be transfered into a regular expression for L(')

(
losure of Reg

�

under \;

�

). For regular expressions, the emptiness problem

is de
idable.

Sometimes, one would like to 
onsider also in�nite models of Lin. This is

one motivation for also 
onsidering in�nite words.
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In�nite words and

B�u
hi{automata

Before introdu
ing in�nite words formally, let us re
onsider �nite words. Let

� be an alphabet. A �nite word u 2 �

+

is a sequen
e u = a

0

� � �a

k�1

of k

elements a

i

2 �. One 
an view u as a mapping

u : f0; : : : ; k � 1g ! � : i 7! a

i

Thus �nite words are mappings from an initial segment of the natural num-

bers into the alphabet. In�nite words are mappings from the set of all natural

numbers into the alphabet. Sin
e we are only interested in the ordering of

natural numbers (and not in the arithmeti
 operations), we denote the nat-

ural numbers by ! (omega) (! is the order type of the natural numbers).

De�nition 4.1 1. An in�nite word over � is a mapping � : ! ! �.

2. �

!

denotes the set of all in�nite words over �.

3. Subsets of �

!

(i.e. sets of in�nite words) are 
alled ?w-langauges�!{

languages

We will often write in�nite words as � = a

0

a

1

a

2

a

3

� � � where a

i

= �(i).
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Example 4.2 � = fa; bg

�(i) =

�

a if i is even

b if i odd

� 
an be written as � = ababab � � � .

Some operations on in�nite words and !{languages:

Segment: if � : ! ! � is an in�nite word then

� �(m;n) is the �nite word �(m) � � ��(n)

� �(m;!) is the in�nite word �(m)�(m+ 1)�(m+ 2) � � � .

Con
atenation: let w = a

1

� � �a

m

be a �nite word and � = �(0)�(1) � � � an

in�nite word. Then w � � is the in�nite word

a

1

� � �a

m

�(0)�(1)�(2) � � � :

Note: It does note make sense to 
on
atenate two in�nite words.

As usual, 
on
atenation 
an be extended from words to sets of words

In�nite iteration: let L � �

�

be a set of �nite words

L

!

:= f� 2 �

!

j � = w

0

w

1

w

2

� � � for words w

i

2 L n f�gg

Example: L = fabg

L

!

= fabababab � � � g: We often write L

!

= (ab)

!

:

Limit: let L � �

�

be a set of �nite words.

limL = f� 2 �

!

j there are in�nitely many n that �(0; n) 2 Lg:

Example 4.3 � = fa; bg.

1. L = a

�

b : limL = ; sin
e any in�nite word 
an have at most one initial

segment in a

�

b.

2. L = ba

�

: limL = fbaaa � � � g = ba

!

3. L = (a

�

bb

�

)

�

: limL = f� 2 �

!

j after ea
h o

urren
e of a in � there

eventually follows an o

urren
e of bg
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�

UCHI{AUTOMATA

4.1 B�u
hi{automata and !{regular languages

Automata working on in�nite words are de�ned like the \usual" �nite au-

tomata. The distin
tion 
omes in when de�ning the a

eptan
e 
ondition.

De�nition 4.4 A B�u
hi{automaton is a (non{det.) �nite automaton A =

(Q;�; I;�; F ), i.e.,

� Q is a �nite sets of states

� � is a �nite alphabet

� I � Q is the set of initial states

� � � Q� ��Q is the transition relation

� F � Q is the set of �nal states

Sin
e we are interested in in�nite words, we 
onsider in�nite paths q

0

a

1

�!

A

q

1

a

2

�!

A

q

2

a

3

�!

A

q

3

a

4

�!

A

q

4

� � � where (q

i

; a

i+1

; q

i+1

) 2 �. The label of this

in�nite path is the in�nite word a

1

a

2

a

3

a

4

� � � .

For �nite paths, we said that they are su

essful if

i) q

0

2 I

ii) q

n

2 F

For in�nite paths, there is no su
h �nal state q

n

. Instead, we require that

�nal states are rea
hed in�nitely often.

The in�nite path q

0

a

1

�! q

1

a

2

�! q

2

a

3

�! : : : is 
alled su

essful i�

i) q

0

2 I

ii) There are in�nitely many i su
h that q

i

2 F

The B�u
hi{automaton A a

epts the !{language

L

!

(A) = f� 2 �

!

j � is the label of a su

essful path in Ag:

Su
h an !{language is 
alled B�u
hi{re
ognizable.
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�

UCHI{AUTOMATA AND !{REGULAR LANGUAGES

Example 4.5 � = fa; b; 
g.

1. A

1

:

1 2

b

a

b; 
 a; 


L

!

(A

1

) = f� 2 �

!

j after every a there eventually is bg

The letter a leads to state

2

. From

2

the a

epting state

1

ist only

rea
hed through b.

2. A

2

:

1 2

b; 
 a

b; 


3

b; 


a

L

!

(A

2

) = f� 2 �

!

j between two 
onse
utive a's there is

an even number of b's and 
'sg

It is easy to see that L

!

(A

2

) = L

2

.

To investigate the languages a

epted by B�u
hi{automata more 
losely, we

introdu
e some notation.

Let A = (Q;�; I;�; F ) be a B�u
hi{automaton and p; q 2 Q. We view A

as a �nite automaton where p is the initial and q is the �nal state. This

automaton a

epts the language

L

p;q

:= fw 2 �

�

j w is the label of some �nite path from p to q in Ag

Thus, L

p;q

are regular languages.

Lemma 4.6

L

!

(A) =

[

i2I;f2F

L

i;f

� L

!

f;f

:
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Proof:

\�" Let � = a

1

a

2

a

3

a

4

� � � 2 L

!

(A). By de�nition of L

!

(A) there is a path

I 3 q

0

a

1

�!

A

q

1

a

2

�!

A

q

2

a

3

�!

A

q

3

a

4

�!

A

� � � su
h that in�nitely often

q

i

2 F . Sin
e F is �nite, there is a single state f 2 F su
h that there

are in�nitely many indi
es i

1

< i

2

< i

3

< � � � with q

i

�

= f . Thus,

we have a

1

� � �a

i

1

2 L

q

0

;f

and a

i

v

+1

� � �a

i

v+1

2 L

f;f

n f"g (� � 1). This

shows that � 2 L

q

0

;f

� L

!

f;f

where q

0

2 I and f 2 F .

\�" Let � = w

0

w

1

w

2

w

3

� � � where w

0

2 L

i;f

and w

i

2 L

f;f

n f"g (i � 1).

Thus, the path i

w

0

�!

A

f

w

1

�!

A

f

w

2

�!

A

f

w

3

�!

A

� � � is a su

essful path,

whi
h shows that � = w

0

w

1

w

2

w

3

� � � 2 L

!

(A).

The next lemma states simple 
losure properties of B�u
hi{re
ognizable lan-

guages.

Lemma 4.7

1. If U � �

�

is regular, then U

!

is B�u
hi{re
ognizable.

2. If U � �

�

is regular and L � �

!

is B�u
hi{re
ognizable, then U � L is

B�u
hi{re
ognizable.

3. If L

1

; L

2

� �

!

are B�u
hi{re
ognizable, the so are L

1

[ L

2

and L

1

\L

2

.

Proof:

1. Re
all that U

!

= f� 2 �

!

j � = u

1

u

2

u

3

� � � with u

i

2 U n f"gg. If U is

regular, then U n f�g is also regular. It is easy to see that there is an

automaton A for U n f"g that satis�es the following:

� A = (�; Q; fq

0

g;�; F ), i.e., A has a single initial state.

� for all a 2 �; q 2 Q we have (q; a; q

0

) 62 �, i.e., q

0


annot be

rea
hed.
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Let A be su
h an automaton for U n f"g.

We de�ne A

0

:= (�; Q; fq

0

g;�

0

; fq

0

g) where

�

0

= � [ f(q; a; q

0

) j 9f 2 F : (q; a; f) 2 �g:

It is easy to show (!) that L

!

(A

0

) = U

!

.

Note: the 
ondition that q

0

is not rea
hable is ne
essary (!).

2. Let A = (Q

1

;�; I

1

;�

1

; F

1

) be a �nite automaton for U and B =

(Q

2

;�; I

2

;�

2

; F

2

) be a B�u
hi{automaton for L. We may assume that

Q

1

\Q

2

= ;.

C = (Q

1

[Q

2

;�; I

0

;�

0

; F

2

) where

I

0

= I

1

[

�

; if I

1

\ F

1

= ;

I

2

if I

1

\ F

1

6= ;

�

0

= �

1

[�

2

[ f(q; a; q

0

) j 9f 2 F

1

� (q; a; f) 2 �

1

� q

0

2 I

2

g

It is easy to show that L

!

(C) = U � L.

3. Union: Exer
ise!

Interse
tion Let A

i

= (Q

i

;�; I

i

;�

i

; F

i

) be a B�u
hi{automaton for

L

i

(i 2 f1; 2g). We de�ne

B := (Q

1

�Q

2

� f0; 1; 2g;�; I

1

� I

2

� f0g;�; F )

where

� := f((q

1

; q

2

; i); a; (q

0

1

; q

0

2

; j)) j

� (q

1

; a; q

0

1

) 2 �

1

and (q

2

; a; q

0

2

) 2 �

2

� i = 0 ^ q

0

1

2 F

1

) j = 1

i = 1 ^ q

0

2

2 F

2

) j = 2

i = 2 ) j = 0

otherwise; i = jg

This means the following: we start with 0 in the 3

rd


omponent. If

we rea
h for the �rst time some f

1

2 F

1

, then the third 
omponent

be
omes 1. If after that we rea
h for the �rst time some f

2

2 F

2

,
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then the third 
omponent be
omes 2 and immediately after that

0. If we rea
h in�nitely often elements of F

1

and in�nitely often

elements of F

2

, then we go through this round in�nitely often.

Thus, we have in�nitely often in the third 
omponent 2. Thus we

must de�ne:

F := Q

1

�Q

2

� f2g

Proposition 4.8 [B�u
hi, 1962℄

1. An !{language L � �

!

is B�u
hi{re
ognizable i� there are regular lan-

guages U

1

; : : : ; U

m

; V

1

; : : : ; V

m

� �

�

su
h that

L =

m

[

i=1

U

i

� V

!

i

:

2. We 
an assume without loss of generality that V

i

� V

i

� V

i

.

Proof:

\)" of 1) as well as 2) follows from Lemma 4.6:

L =

[

i2I;f2F

L

i;f

� L

!

f;f

and L

f;f

� L

f;f

� L

f;f

:

\(" of 1) is an immediate 
onsequen
e of Lemma 4.7.

Be
ause of this 
lose 
onne
tion to regular languages, B�u
hi{re
ognizable

languages are 
alled !{regular . If U

i

; V

i

are given by regular expressions and

if L =

S

m

i=1

U

i

� V

!

i

, then we 
all

S

m

i=1

U

i

� V

!

i

an !{regular expression for L.
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Example 4.9 : 
onsider the automaton A

2

from Example 4.5:

1 2

b; 
 a

b; 


3

b; 


a

L

1;1

= (b [ 
)

�

;

L

1;2

= (b [ 
)

�

� a � L

2;2

;

L

2;2

= (a [ ((b [ 
) � (b [ 
)))

�

;

L

!

(A

2

) = L

1;1

� L

!

1;1

[ L

1;2

� L

!

2;2

= L

!

1;1

[ L

1;2

� L

!

2;2

= ((b [ 
)

�

)

!

[ (b [ 
)

�

� a � L

2;2

� L

!

2;2

(U

�

)

!

= U

!

U � U

!

= U

!

= (b [ 
)

!

[ (b [ 
)

�

� a � (a [ (b [ 
) � (b [ 
))

!

:

The 
hara
terization of B�u
hi{re
ognizable languages also shows that the

emptiness problem is de
idable.

Proposition 4.10

1. Given a B�u
hi{automatonA, we 
an e�e
tively de
ide whether L

!

(A) =

; or not.

2. If L

!

(A) 6= ;, then L

!

(A) 
ontains an ultimately periodi
 word, i.e. a

word of the form uvvvv � � � for u 2 �

�

; v 2 �

+

.

Proof:

1. Let A = (Q;�; I;�; F ). Then Lemma 4.6 says that L

!

(A) =

S

i2I;f2F

L

i;f

�L

f;f

. We know that, L

!

(A) 6= ; i� there is an i 2 I; f 2 F

su
h that L

i;f

6= ; and L

f;f

nf"g 6= ;. There are �nitely many su
h pairs

i; f , and for ea
h pair L

i;f

and L

f;f

n f"g are regular. The emptiness

problem for regular languages is de
idable. This shows 1.
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2. If L

!

(A) 6= ; then there is an i 2 I; f 2 F; u 2 �

�

and v 2 �

+

su
h that

u 2 L

i;f

and v 2 L

f;f

n f"g. But then uvvvv � � � 2 L

i;f

� L

!

f;f

� L

!

(A).

What about the equivalen
e problem \L

1

= L

2

"?

For regular languages, de
idability of the equivalen
e problem follows from

the de
idability of the emptiness problem sin
e the 
lass of regular languages

is 
losed under [;\;

�

:

L

1

= L

2

i� (L

1

\ L

2

) [ (L

1

\ L

2

) = ;

For !{regular languages, we still must show 
losure under

�

.

How 
an one show 
losure under 
omplement for regular languages?

1. Make the �nite automaton deterministi
 (power set 
onstru
tion)

2. In the deterministi
 automaton, ex
hange �nal states with non{�nal

states.

For !{languages, neither 1. nor 2. works.

Example 4.11 Let � = fa; bg. The non{deterministi
 B�u
hi{automaton

shown below a

epts the !{regular language L = (a [ b)

�

b

!

.

1 2

a; b b

b

This language 
annot be a

epted by a deterministi
 B�u
hi{automaton.

Proof: Assume that A = (Q;�; q

0

; Æ; F ) is a deterministi
 B�u
hi{automaton

for L. Deterministi
 means: Æ : Q � � ! Q is a fun
tion. Sin
e ab

!

2 L,
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there is a k

1

> 0 and a f

1

2 F su
h that q

0

ab

k

1

�!

A

f

1

: Sin
e ab

k

1

ab

!

2 L and

A is deterministi
, there is a k

2

> 0 und f

2

2 F su
h that

q

0

ab

k

1

�!

A

f

1

ab

k

2

�!

A

f

2

:

Note that this is only true sin
e A is deterministi
!

By iterating this argument, we obtain k

1

; k

2

; k

3

; : : : > 0 and f

1

; f

2

; f

3

; : : : 2 F

su
h that

q

0

ab

k

1

�!

A

f

1

ab

k

2

�!

A

f

2

ab

k

3

�!

A

f

3

ab

k

4

�!

A

f

4

� � � :

Thus, � = ab

k

1

ab

k

2

ab

k

3

ab

k

4

� � � 2 L

!

(A). However � 62 L sin
e it 
ontains

in�nitely many a's.

Example 4.12 Even for deterministi
 B�u
hi{automaton, ex
hanging �nal

states states with non{�nal states does not work. Re
onsider the automaton

A

1

of Example 4.5.

A

1

:

1 2

b

a

b; 
 a; 


L

!

(A

1

) = f� 2 fa; b; 
g j after ea
h a in � there eventually is b in �g.

A

1

:

2

b

a

b; 
 a; 


1

We have (ab)

!

2 L

!

(A

1

) \ L

!

(A

1

), and thus L

!

(A

1

) 6= L

!

(A

1

)

Example 4.11 shows that the 
lass of languages a

epted by deterministi


B�u
hi{automata is stri
tly smaller then the 
lass of !{regular languages.

The next proposition 
hara
terizes this 
lass.
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Proposition 4.13 For L � �

!

the following are equivalent:

1. L is a

epted by a deterministi
 B�u
hi{automaton.

2. L = limU for a regular language U .

Proof:

\1! 2" Let A = (Q;�; q

0

; Æ; F ) be a deterministi
 B�u
hi{automaton with

L = L

!

(A). Viewed as a �nite automaton,A a

epts a regular language

U := L(A).

Claim: For a 2 �

!

the following are equivalent:

i) � 2 L

!

(A).

ii) � 2 limU , i.e., in�nitely many initial segments of � belong to U .

This shows L = limU . It remains to prove the 
laim:

i)!ii) � 2 L

!

(A)) there are f

1

; f

2

; : : : 2 F and u

1

; u

2

; : : : 2 �

+

su
h

that q

0

u

1

�!

A

f

1

u

2

�!

A

f

2

u

3

�!

A

� � � . Thus, u

1

; u

1

u

2

; u

1

u

2

u

3

; : : : are

initial segments of � that belong to U .

ii)!i) Let fu

1

; u

1

u

2

; u

1

u

2

u

3

; : : :g be initial segments of � that belong

to U = L(A) where u

i

2 �

+

for i � 1. Sin
e A is deterministi
,

this means that there are f

1

; f

2

; f

3

: : : 2 F with q

0

u

1

�!

A

f

1

u

2

�!

A

f

2

u

3

�!

A

f

3

u

4

�!

A

� � � . Thus � = u

1

u

2

u

3

u

4

� � � 2 L

!

(A).

\2! 1" Let L = limU for a regular language U . Let A be a deterministi


�nite automaton for U . Viewing A as a B�u
hi{automaton yields an

!{regular language L

!

(A). Now i) $ ii) from above shows that L =

limU = L

!

(A), and thus L is a

epted by a deterministi
 B�u
hi{

automaton.
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Corollary 4.14 The 
lass of languages a

epted by deterministi
 B�u
hi{

automaton is not 
losed under 
omplement.

Proof: In Example 4.11 we have shown that L = (a [ b)

�

b

!

is not a

epted

by a deterministi
 B�u
hi{automaton. What is L?

L = fa; bg

!

n L 
onsists of those words � 2 fa; bg

!

su
h that � 
ontains

in�nitely many a's. Thus, the following is a deterministi
 B�u
hi{automaton

for L:

b

a

b

a

Another way of showing that L is a

epted by a deterministi
 B�u
hi{automaton

is the following:

L = lim(b

�

a)

�

4.2 Closure under 
omplement

The 
lass of !{regular languages is 
losed under 
omplement. However, the

proof is more 
ompli
ated than the one for regular languages.

Main Theorem 4.15 If L � �

!

is !{regular, then �

!

nL is also !{regular.

Idea underlying the proof: we show that L und L 
an be written as a �nite

union of languages U � V

!

where U; V are regular languages. The languages

U; V are obtained as equivalen
e 
lasses of a 
ongruen
e �

A

of �nite index

where A is a B�u
hi{automaton for L.
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Let A = (Q;�; I;�; F ) be a B�u
hi{automaton with L

!

(A) = L. We write

p

F

�!

A

w

q to indi
ate there is a path in A from p to q with label w that


ontains at least one state from F . We de�ne:

L

F

p;q

:= fw 2 �

�

j p

F

�!

A

w

qg

The languages L

F

p;q

are regular sin
e

L

F

p;q

=

[

f 2 F

L

p;f

� L

f;q

:

De�nition 4.16 �

A

is de�ned as follows: for all u; v 2 �

�

u �

A

v i� 8p; q 2 Q 1) p

u

�!

A

q i� p

v

�!

A

q

2) p

F

�!

A

u

q i� p

F

�!

A

v

q

Lemma 4.17 �

A

is a 
ongruen
e relation of �nite index.

Proof:

1. Obviously, �

A

is an equivalen
e relation (sin
e \i�" is re
exive, tran-

sitive, and symmetri
).

Congruen
e: u �

A

v ) xuy �

A

xvy for all words x; y.

Assume that u �

A

v and that p

F

���!

A

xuy

q. We want to show that this

implies p

F

�!

A

xvy

q. There are states p

0

; q

0

su
h that p

x

�!

A

p

0

u

�!

A

q

0

�! yq.

Case 1: p

F

�!

A

x

p

0

Sin
e u �

A

v and p

0

u

�!

A

q

0

, we know that p

0

v

�!

A

q

0

, and thus

p

F

�!

A

x

p

0

v

�!

A

q

0

y

�!

A

q, i.e. p

F

���!

A

xvy

q.

Case 2: q

0

F

�!

A

y

q 
an be treated similarly.
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Case 3: p

0

F

�!

A

u

q

0

. Sin
e u �

A

v, this implies p

0

F

�!

A

v

q

0

, and thus

p

xvy

���!

A

F

q.

Thus, in all 
ases p

F

���!

A

xuy

q implies p

F

���!

A

xvy

q.

The other 
ases 
an be handled similarly.

2. Finite index: the �

A

{equivalen
e 
lass of w is uniquely determined by

the following pair of sets: (f(p; q) j p

w

�!

A

qg; f(p; q) j p

F

�!

A

w

qg).

Thus, there are at most 2

jQ�Qj

� 2

jQ�Qj

�

A

{
lasses.

How do the �

A

{
lasses look like?

Lemma 4.18

1. [w℄ =

T

p;q 2 Q

w 2 L

p;q

L

p;q

\

T

p;q 2 Q

w =2 L

p;q

L

p;q

\

T

p;q 2 Q

w 2 L

F

p;q

L

F

p;q

\

T

p;q 2 Q

w =2 L

F

p;q

L

F

p;q

:

2. In parti
ular, the �

A

{
lasses are regular languages.

Proof:

2. is an immediate 
onsequen
e of 1. sin
e the languages L

p;q

and L

F

p;q

are

regular, and regular languages are 
losed under \ and

�

.

1. \�" Let u 2 [w℄, i.e. u �

A

w. If w 2 L

p;q

(L

p;q

; L

F

p;q

; L

F

p;q

), then

u 2 L

p;q

(L

p;q

; L

F

p;q

; L

F

p;q

).

\�" Assume that u is in the interse
tion on the right{hand side. We

must show u �

A

w.

� p

w

�!

A

q ) w 2 L

p;q

) u 2 L

p;q

) p

u

�!

A

q

� p 6

w

�!

A

q ) w 2 L

p;q

) u 2 L

p;q

) p 6

u

�!

A

q.

�

F

�!

w


an be treated in the same way.

Mar
h 3, 2005 69



CHAPTER 4. INFINITE WORDS AND B

�

UCHI{AUTOMATA

Proposition 4.19 Let A be a B�u
hi{automaton.

1. For all �

A

{
lasses U; V we have:

a) UV

!

\ L

!

(A) 6= ; ) UV

!

� L

!

(A)

b) UV

!

\ L

!

(A) 6= ; ) UV

!

� L

!

(A)

2. For every � 2 �

!

there exist �

A

{
lasses U; V su
h that � 2 UV

!

.

First, we show that this implies that L

!

(A) is !{regular.

1. and 2. of the proposition imply that

� L

!

(A) =

[

U;V�

A

{
lasses

UV

!

� L

!

(A)

UV

!

� L

!

(A) =

[

U;V�

A

{
lasses

UV

!

� L

!

(A)

UV

!

The non{trivial part is the in
lusion \�", whi
h needs both 2. and 1.

Sin
e the �

A

{
lasses U; V are regular, this shows that L

!

(A) is !{regular.

We 
ould prove the proposition in an ad ho
 manner, but it is more elegant

to use a ni
e 
ombinatorial result: Ramsey's theorem.

De�nition 4.20 For a set M , we denote by [M ℄

2

the set of all 2{element

subsets of M . Let [M ℄

2

= A

1

[ A

2

[ � � � [ A

n

be a partition of [M ℄

2

into n

disjoint 
lasses. The set X � M is 
alled homogeneous for this partition if

there is an i; 1 � i � n, su
h that [X℄

2

� A

i

.

Example: [N℄

2

= A [ B where

A = ffi; jg j i 6= j and i � j mod 2g

B = ffi; jg j i 6= j and i 6� j mod 2g

G = fi 2 N j i is eveng

U = fj 2 N j j is oddg

are both homogeneous sin
e

[G℄

2

� A and [U ℄

2

� A
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Proposition 4.21 [Ramsey℄ Let [N℄

2

= A

1

[ A

2

[ � � � [ A

n

be a partition

of [N℄

2

. Then there is an in�nite set X � N that is homogeneous for this

partition.

Proof: see J.G.Rosenstein: Linear Orderings, A
ademi
 Press, 1982, p. 111,112.

Proof of Prop. 4.19

2. Let � 2 �

!

. Together with �

A

, � de�nes a partition of [N℄

2

.

Let U

1

; U

2

; : : : ; U

n

be the (�nitely many) �

A

{
lasses.

A

�

= ffi; jg j i < j and �(i+ 1; j) 2 U

�

g:

Sin
e every word �(i+1; j) belongs to one of the �

A

{
lasses and sin
e

the �

A

{
lasses are disjoint, [N℄

2

= A

1

_

[A

2

_

[ � � �

_

[A

n

is a partition.

By Ramsey, there is an in�nite X � N that is homogeneous for this

partition, i.e. there is a k; 1 � k � n su
h that for all i; j 2 X with

i < j we have �(i+ 1; j) 2 U

k

.

Sin
e X is in�nite, there is an in�nite sequen
e i

1

; i

2

; i

3

; : : : in X su
h

that i

j

+ 1 < i

j+1

. Then we know that �(i

j

+ 1; i

j+1

) 2 U

k

n f�g. Let

U be the �

A

{
lass of �(0; i

1

). Then we have

� = �(0; i

1

)�(i

1

+ 1; i

2

)�(i

2

+ 1; i

3

) : : : 2 U � U

!

k

:

1. Let � 2 UV

!

\ L

!

(A). This means

i) � = uv

1

v

2

v

3

� � � where u 2 U and v

i

2 V n f�g.

ii) There is a su

essful path

I 3 q

0

u

�!

A

q

1

v

1

�!

A

q

2

v

2

�!

A

q

3

v

3

�!

A

� � �

with label � = uv

1

v

2

v

3

� � �

Sin
e this path is su

essful we rea
h in�nitely often a �nal state. Thus

there are in�nitely many i � 1 su
h that q

i

v

i

�!

A

F

q

i+1

.

Let � 2 UV

!

be arbitrary. Then � is of the form � = u

0

v

0

1

v

0

2

v

0

3

� � � with

u

0

2 U and v

0

i

2 V n f"g.
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Sin
e U and V are �

A

{
lasses, we know that u �

A

u

0

and v

i

�

A

v

i

0

.

Thus there is a path of the form q

0

u

0

�!

A

q

1

v

0

1

�!

A

q

2

v

0

2

�!

A

q

3

v

0

3

�!

A

� � �

with label � = uv

0

1

v

0

2

v

0

3

� � � inA su
h that there are in�nitely many i � 1

with q

i

v

0

i

�!

A

F

q

i+1

. This shows that � 2 L

!

(A).

This shows a) of 1. Part b) of 1. is an immediate 
onsequen
e: assume

that � 2 UV

!

\L

!

(A), but there is � 2 UV

!

\L

!

(A). Now a) implies

� 2 L

!

(A) .

Corollary 4.22 For every B�u
hi{automaton A we 
an e�e
tively 
onstru
t

a B�u
hi{automaton B su
h that L

!

(B) = L

!

(A).

Proof:

1. The �

A

{
lasses (to be more pre
ise: �nite automata a

epting them)


an e�e
tively be 
onstru
ted: Lemma 4.18 shows how they 
an be

obtained from the languages L

p;q

and L

F

p;q

.

2. For a given pair U; V of �

A

{
lasses we 
an de
ide whether UV

!

\

L

!

(A) 6= ;. In fa
t, the emptiness problem for !{regular languages is

de
idable (Prop 4.10).

3. For �nite unions of the language UV

!

we 
an e�e
tively 
onstru
t a

B�u
hi{automaton.

Corollary 4.23 The equivalen
e problem for !{regular languages is de
id-

able.

Proof:

L

!

(A

1

) = L

!

(A

2

) i�

(L

!

(A

1

) n L

!

(A

2

)) [ (L

!

(A

2

) n L

!

(A

1

))

| {z }

for this we 
an 
onstru
t a B�u
hi{automaton.

= ;

The emptiness problem for B�u
hi{automaton is de
idable (Prop. 4.10).
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4.3 Muller{automata

We know that deterministi
 B�u
hi{automaton are weaker than non{deterministi


ones. Can we get an automata model where the deterministi
 automata are

as powerful as non{deterministi
 B�u
hi{automata?

De�nition 4.24 [Muller{automata℄ A Muller{automaton is of the form

A = (Q;�; I;�;F) where

� Q;�; I;� is as for B�u
hi{automata.

� F � 2

Q

is a set of sets of �nal states.

The in�nite path p

0

a

0

�!

A

p

1

a

0

�!

A

p

2

a

2

�!

A

� � � is su

essful i�

� p

0

2 I

� fp 2 Q j there are in�nitely many i with p = p

i

g 2 F .

L

!

(A) = f� 2 �

!

j � is the label of a su

essful path in Ag.

Example 4.25 L = (a [ b)

�

b

!

.

In Example 4.11 we have shown that L 
annot be a

epted by a deterministi


B�u
hi{automaton. The following is a deterministi
 Muller{automaton for L:

1 2

a

b

a

b

F = ff2gg

If the set of states rea
hed in�nitely often is f2g then

1

is rea
hed only a

�nite number of times. Thus, we have only �nitely may a's.

Note: 
onsidered as a B�u
hi{automaton with F = f2g, this automaton also

a

epts words not in L, like (ab)

!

.
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Proposition 4.26 For an !{regular{language L the following are equiva-

lent:

1. L is !{regular.

2. L is a

epted by a deterministi
 Muller{automaton.

Proof:

\2! 1" is simple. Let A = (Q;�; q

0

; Æ;F) be a deterministi
 Muller{

automaton. Then we have:

L

!

(A) =

[

F 2 F

0

�

\

q 2 F

limL

q

0

;q

| {z }

q is rea
hed in�nitely often

\

\

q 2 QnF

limL

q

0

;q

1

A

limL

q

0

;q


ontains exa
tly those words that label paths in A on whi
h q

is rea
hed in�nitely often. This is only true sin
e A is deterministi
.

We know that the languages limL

q

0

;q

are !{regular (Prop. 4.13). The

!{regular languages are 
losed under [;\;

�

.

\1! 2" is as hard as showing 
omplementation for B�u
hi{automata. Rea-

son: it is easy to show that the 
lass of languages a

epted by deter-

ministi
 Muller{automata is 
losed under 
omplement. We don't give

the the proof for \1! 2" here.

Proposition 4.27 If L � �

!

is a

epted by a deterministi
 Muller{automaton,

then so is L.

Proof: Let L = L

!

(A) for a deterministi
 Muller{automaton A = (Q;�; q

0

;

Æ;F). It is easy to see that B = (Q;�; q

0

; Æ; 2

Q

n F) a

epts L.
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Chapter 5

In�nite words and logi
al

formulae

5.1 S1S logi
 and !{regular languages

Goal: des
ribe a set of formulae that 
an exa
tly de�ne the !{regular lan-

guages.

Just as in the 
ase of �nite words, �rst{order predi
ate logi
 is not enough

to get all !{regular languages.

De�nition 5.1 Formulae of monadi
 se
ond{order logi
 of one su

essor

(S1S) are built using:

� n unary predi
ate symbols P

1

; P

2

; : : : ; P

n

,

� a unary fun
tion symbol s,

� a 
onstant symbol 0,

� a binary predi
ate symbol =,

� a binary predi
ate symbol <,

� Boolean operations ^;_;:,

Mar
h 3, 2005 75



CHAPTER 5. INFINITE WORDS AND LOGICAL FORMULAE

� �rst{order quanti�ers 9x; 8x ranging over elements of the domain

� se
ond{order quanti�ers 9X; 8X ranging over subsets of the domain

As interpretation domain we take the natural numbers !, where we interpret

� 0 as 0

� s as the su

essor fun
tion: n 7! n+ 1

� = as equality

� < as the usual ordering on !

As in the �nite 
ase we take as alphabet � = f0; 1g

n

.

An interpretation P

I

1

; P

I

2

; : : : ; P

I

n

of the unary predi
ate symbols 
orresponds

to an !{word

� = �(0)�(1)�(2) � � � 2 �

!

where

�(m) = (b

m

1

; : : : ; b

m

n

) with b

m

i

=

�

1 if m 2 P

I

i

0 if m 62 P

I

i

For a 
losed S1S{formuale ' and � 2 �

!

we write � j= ' to say that the

interpretation 
orresponding to � makes ' true. The !{language a

epted

by ' is de�ned as

L

!

(') = f� 2 �

!

j � j= 'g:

Example 5.2 Let n = 1, i.e. � = f0; 1g.

1. ' = P

1

(0) ^ (8x P

1

(x)) :P

1

(s(x))) ^ (8x :P

1

(x)) P

1

(s(x)))

L

!

(') = f10101010 � � � g = (10)

!

2. L

1

= f� 2 �

!

j after every 1 in � there eventually is 0g

For the formula '

1

= 8x (P

1

(x) ) 9y x < y ^ :P

1

(y)) we have

L

!

('

1

) = L

1

.

76 Mar
h 3, 2005



5.1. S1S LOGIC AND !{REGULAR LANGUAGES

3. L

2

= f� 2 �

!

j between two 
onse
utive 1s there is an even number of

0sg

'

2

= 8x 8y (x < y ^ P

1

(x) ^ P

1

(y) ^ 8z (x < z ^ z < y ) :P

1

(z)))

) 9X 9Y 8z ((x < z ^ z � y))

(:(X(z) ^ Y (z))^

(X(z)) Y (s(z))) ^ (Y (z)) X(s(z)))^

X(s(x)) ^X(y))):

As in the �nite 
ase, we use Q

a

(x) as an abbreviation for the formula that

says that a 2 � is at position x.

Next we show that we 
an dispense with the symbols 0 and < without losing

expressive power.

Lemma 5.3 Both 0 and < 
an be expressed in S1S using the other symbols.

Proof:

� x = 0 is equivalent to :9y (y < x)

� x < y is equivalent to 9X (:X(x) ^X(y) ^ 8z (X(z)) X(s(z)))):

Proposition 5.4 For an !{language L � �

!

the following are equivalent:

1. L is !{regular.

2. L = L

!

(') for a 
losed S1S{formula '.

Proof:

\1! 2" Let A = (Q;�; I;�; F ) be a B�u
hi{automaton su
h that L =

L

!

(A). We express the existen
e of a su

essful path with the help

of an S1S{formula. Let Q = fq

0

; : : : ; q

m

g be the states of A. For
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ea
h state q

i

we introdu
e a se
ond{order variable Y

i

with the intended

meaning:

Y

i

(x)b= at position x in the path we have state q

i

9Y

0

� � � 9Y

m

�

8x

^

0�i<j�m

:(Y

i

(x) ^ Y

j

(x))

�

^ the sets are disjoint

_

q

i

2I

Y

i

(0) ^ the path starts with an

initial state

8x

_

(q

i

;a;q

j

)2�

Y

i

(x)^Q

a

(x)

^Y

j

(s(x)) ^

the transition from q

i

at

x with a to q

j

at s(x)

must be admissible in �

_

q

i

2F

8x 9y (x < y ^ Y

i

(y)) one of the �nal states is

rea
hed in�nitely often

By 
onstru
tion, a word � 2 �

!

satis�es this formula i� there is a

su

essful path in A with label �.

\2! 1" First, we transform S1S{formulae into an appropriate normal form:

1. These formulae 
ontain only se
ond{order varibales (no �rst{order

varibales)

2. Atomi
 formulae are of the following form:

� X

i

� X

j

(with the semanti
s 8x X

i

(x)) X

j

(x))

� Su

(X

i

) = X

j

(with the semanti
s that X

i

and X

j

are sin-

gleton sets fn

i

g and fn

j

g su
h that n

j

= n

i

+ 1)

Formulae that are built from these atomi
 formulae using Boolean op-

erations and se
ond{order quanti�ers are 
alled S1S

0

{formulae.

Claim: Every S1S{formula 
an be transformed into an equivalent

S1S

0

{formula.

Proof of the 
laim:

i) We have already seen that 0 and > 
an be eliminated.
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ii) Nested appli
ations of s 
an be eliminated:

x = s(s(� � � s

| {z }

m>1

(y) � � � ))

is equivalent to

9y

1

: : :9y

m�1

(x = s(y

1

) ^ y

1

= s(y

2

) ^ : : : ^ y

m�1

= s(y)):

iii) Thus we may assume that all atomi
 formulae are of the form:

x = y; s(x) = y; P

i

(x); X(x)

In the �nal step, we use the following abbreviations:

� X = Y for \X � Y ^ Y � X"

� X 6= Y for \:(X = Y )"

� Singleton(X) =

\9Y (Y � X ^ Y 6= X ^ 8Z (Z � X ) (Z = X _ Z = Y )))"

X has exa
tly one stri
t subset, whi
h is the 
ase i� X is a

singleton set.

iv) First{order varibales 
an be eliminated as illustrated by the fol-

lowing example:

8x 9y s(x) = y ^ Z(y)

is transformed into

8X Singleton(X)) 9Y (Singleton(Y ) ^ Su

(X) = Y ^ Y � Z):

Claim

We show by indu
tion on the stru
ture of S1S

0

{formulae that they

de�ne !{regular languages. We also 
onsider S1S

0

{formulae with free

se
ond{order variables. When de�ning languages these free varibales

are treated like unary predi
ate symbols: e.g. 9Y (X � Y ^ P

1

� Y )

yields an !{language over � = f0; 1g

2

sin
e P

1

and X o

ur free.

Indu
tion base: atomi
 formulae of the form X � Y and Su

(X) =

Y yield !{languages over � = f0; 1g

2

(we assume that the �rst 
om-

ponent stands for X and the se
ond for Y ).

L

!

(X � Y ) = f� = �

0

�

1

�

2

� � � j where �

i

= (b

i

1

; b

i

2

) we have

b

i

1

= 1) b

i

2

= 1g
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Thus, L

!

(X � Y ) is a

epted by

1

(0; 0); (0; 1); (1; 1)

L

!

(Su

(X) = Y ) = f� = �

0

�

1

�

2

� � � j where �

i

= (b

i

1

; b

i

2

) we have that

there exists a k su
h that

� b

k

1

= 1 ^ b

(k+1)

2

= 1

� b

j

1

= 0 for j 6= k

� b

j

2

= 0 for j 6= k + 1g:

Thus, L

!

(Su

(X) = Y ) is a

epted by

1 2 3

(0; 0) (0; 0)

(1; 0) (0; 1)

Indu
tion step: It is suÆ
ient to 
onsider :;_; 9X.

i) L

!

(:') = �

!

n L

!

('). By indu
tion, we know that L

!

(') is

!{regular, and thus �

!

n L

!

(') is also !{regular (Main Theo-

rem 4.15).

ii) in prin
iple, _ 
orresponds to union. However, if ' = '

1

_ '

2

,

then '

1

and '

2

may be based on di�erent predi
ates/se
ond{order

varibales.

Example:

'(X

1

; X

2

; X

3

| {z }

free variables

or unary pred-

i
ates

) = '

1

(X

1

; X

2

) _ '

2

(X

2

; X

3

)

Both '

1

and '

2

de�ne a language over � = f0; 1g

2

, but the �rst


omponent for '

1


orresponds to X

1

whereas the �rst 
omponent

for '

2


orresponds to X

2

.
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We extend '

1

and '

2

by the missing variables, e.g. '̂

1

= '

1

^X

3

�

X

3

and '̂

2

= '

2

^X

1

� X

1

.

If A

1

is a B�u
hi{automaton for '

1

, then we obtain a B�u
hi{

automaton for '

1

as follows:

^

A

1

has a transition q

(b

1

;b

2

;b

3

)

���! q

0

i� q

(b

1

;b

2

)

���! q

0

in A

1

.

L

!

(') = L

!

('

1

_ '

2

)

= L

!

('̂

1

_ '̂

2

)

= L

!

('̂

1

) [ L

!

('̂

2

)

= L

!

(

^

A

1

) [ L

!

(

^

A

2

)

| {z }

!��regular

iii) '(X

1

; : : : ; X

n

) = 9Y  (Y;X

1

; : : : ; X

n

):

If A is a B�u
hi{automaton a

epting L

!

( (Y;X

1

; : : : ; X

n

)), then

we obtain a B�u
hi{automaton for L

!

(9Y  (Y;X

1

; : : : ; X

n

)) by re-

pla
ing every transition q

(b

0

;b

1

; :::; b

n

)

���! q

0

by q

(b

1

; :::; b

n

)

���! q

0

Example 5.5 (illustrates \2! 1")

' = 9Y (X � Y _ Su

(Y ) = Z)

A

1

:

1

(0; 0); (0; 1); (1; 1)

is an automaton for X � Y ;

adding a 
omponent for Z:

^

A

1

:

1

(0; 0; 0); (0; 1; 0); (1; 1; 0)

(0; 0; 1); (0; 1; 1); (1; 1; 1)

Mar
h 3, 2005 81



CHAPTER 5. INFINITE WORDS AND LOGICAL FORMULAE

A

2

:

1 2 3

(0; 0) (0; 0)

(1; 0) (0; 1)

is an automaton for Su

(Y ) = Z;

adding a 
omponent for X:

^

A

2

:

1 2 3

(0; 1; 0) (0; 0; 1)

(1; 0; 1)

(0; 0; 0)

(1; 0; 0)

(0; 0; 0)

(1; 0; 0)

(1; 1; 0)

^

A

1

_

[

^

A

2

is an automaton for X � Y _ Su

(Y ) = Z. The automaton A for

' thus looks as follows:

(0; 0)

(1; 0)

(0; 0)

(1; 0)

1 2 31

(0; 0)

(1; 0)

(0; 1)

(1; 1)

(0; 0); (1; 0)

(0; 1); (1; 1)

1'

The proof of the proposition shows that for every S1S{formula ' we 
an

e�e
tively 
onstru
t a B�u
hi{automaton A su
h that L

!

(') = L

!

(A).

Corollary 5.6 Validity in S1S is de
idable.

Proof: If ' is a (
losed) S1S{formula, then ' is valid i� :' does not have

a model, i.e., L

!

(:') = ;. We 
an e�e
tively 
onstru
t a B�u
hi{automaton
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A with L

!

(:') = L

!

(A) and the emptiness problem for B�u
hi{automata is

de
idable.

The proof of Prop 5.4 
an be modi�ed su
h that it works for �nite words.

Corollary 5.7 For a language L � �

�

the following are equivalent

1. L is regular.

2. L n f"g = L(') for a 
losed S1S{formula '.

As introdu
ed in Chapter 1.3, �nite words 
orrespond to �nite interpreta-

tions. In the proof of \1 ! 2" we have to take the di�erent a

eptan
e


ondition into a

ount:

\

_

q

i

2F

8x 9y x < y ^ Y

i

(y)"

is repla
ed by

\

_

q

i

2F

8x Max(x)

| {z }

abbrev. of s(x) = x

) Y

i

(x)"

In the proof of \2! 1" we use the 
losure properties of regular languages.

Corollary 5.8 For a 
losed S1S{formula ' it is de
idable whether ' holds

for all �nite models.

Note: there are formulae that hold in all �nite interpretations, but not in

in�nite ones.

Example:

9y8x (x � y)

De�nition 5.9 The !{language L � �

!

is 
alled star{free i� L =

S

n

i=1

U

i

V

!

i

where U

i

; V

i

� �

�

are star{free.

Proposition 5.10 For an !{language L � �

!

the following are equivalent

1. L is star{free.

2. L = L

!

(') for a 
losed formula of S1S not 
ontaining se
ond{order

quanti�ers.
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Chapter 6

Automata on �nite trees

We 
onsider trees where the number of su

essor nodes is determined by the

arity of the node label.

6.1 Finite trees

Example 6.1 � = f+; �;�; x; yg where +; � have arity 2, � has arity 1, and

x; y have arity 0.

x

01

yx

00

t =

�

1

10

0

"

+

�

is a �{labelled tree. The nodes 
an

uniquely be addressed using words

over the alphabet f0; 1g. Thus, the

tree t 
an be viewed as a partial

fun
tion

t : f0; 1g

�

! �

with domain dom(t) = f"; 0; 1; 00;

01; 10g; e.g. t(0) = �, t(10) = x.
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De�nition 6.2 Let � be an alphabet and � : �! ! a fun
tion that assigns

with every a 2 � an arity �(a) (alphabet with arity fun
tion). For n 2 ! let

�

n

= fa 2 � j �(a) = ng. A �{tree is a partitial fun
tion t : !

�

! � whose

domain dom(t) satis�es the following:

1. " 2 dom(t),

2. For all u 2 !

�

and i 2 ! we have

ui 2 dom(t) i� u 2 dom(t) and i < �(t(u)):

1) means that every tree has a root.

2) says that every node 6= " has a prede
essor node and that every node has

the right number of su

essors.

A leaf of t is a node u 2 dom(t) su
h that �(t(u)) = 0, i.e. u does not have

su

essor nodes. The tree t is �nite if dom(t) is �nite. By T

�

we denote the

set of all �nite trees over �. Let � be the pre�x relation on !

�

, i.e.

u � v i� 9u

0

2 !

+

with uu

0

= v:

Be
ause of 2 in Def. 6.2, the set dom(t) for a tree t is 
losed under building

pre�x, i.e. v 2 dom(t) and u � v ) u 2 dom(t).

De�nition 6.3

1. A path through t is a maximal and totally ordered subset of dom(t).

In Example 6.1, f"; 0; 00g; f"; 0; 01g, and f"; 1; 10g are all the paths.

f"; 00g is not maximal and f"; 0; 00; 01g is not totally ordered.

2. The subtree of t at position u 2 dom(t) is the tree t

u

with

� dom(t

u

) = fv j uv 2 dom(t)g

� t

u

(v) = t(uv).

For example, t

0

=

0

x

1

y

0

"

x

-

t

1

=

�

"
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CHAPTER 6. AUTOMATA ON FINITE TREES

6.2 Automata on �nite trees

A word w 2 �

�


an be viewed as a �nite tree over an

alphabet

b

� = � [ fxg where �(a) = 1 for all a 2 �

and �(x) = 0. E.g. abb 
an be viewed as the tree:

A path with label abb of a �nite automaton 
orre-

sponds to a labelling of the nodes of the tree with

states of the automaton:

b

q

0

q

1

a

"

q

1

q

1

q

0

b

b

a

x

q

1

0

00

000

This 
an be generalized to trees with bran
hing fa
tor > 1.

De�nition 6.4 An LR{tree automaton (leaf to root) A = (Q;�; I;�; F )


onsists of:

� a �nite set of states Q

� a �nite alphabet � with arity fun
tion

� an initial assignment I : �

0

! 2

Q

� a transition assignment �, whi
h assigns to every a 2 � of arity n > 0

a fun
tion �

a

: Q

n

! 2

Q

� a set of �nal states F

A run of this automaton on the tree t 2 T

�

is a mapping ` : dom(t) ! Q

su
h that

`(u) 2 �

a

(`(u0); : : : ; `(u(n� 1)))

where a = t(u) has arity n.
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The ` run is su

essful i�

� `(u) 2 I(t(u)) for all leafs u,

� `(") 2 F .

The tree language a

epted by A is

L(A) = ft 2 T

�

j there is a su

essful run of A on tg:

A is deterministi
 i�

� jI(a)j = 1 for all a 2 �

0

� j�

a

(q

1

; q

2

; : : : ; q

n

)j = 1 for all n > 0; a 2 �

n

and q

1

; q

2

; : : : ; q

n

2 Q

In this 
ase we write I as a fun
tion I : �

0

! Q and �

a

as a fun
tion

�

a

: Q

n

! Q

Example 6.5 � = �

0

[ �

1

[ �

2

where �

0

= fx; yg;�

1

= f�g;�

2

= f+; �g

A = (Q;�; I;�; F ) where

� Q = f0; 1; 2g,

� I(x) = 1; I(y) = 2,

� �

�

(q) = �q mod 3;

�

+

(q

1

; q

2

) = q

1

+ q

2

mod 3;

�

�

(q

1

; q

2

) = q

1

� q

2

mod 3;

� F = f1g.

x

�

t =

1

2

1 2 1

2 �

y x

+

The automaton evaluates arithmeti


expressions with x = 1 and y = 2 mod-

ulo 3, and a

epts if the value is 1.
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CHAPTER 6. AUTOMATA ON FINITE TREES

Just as in the 
ase of words, non{det. automata 
an be transformed into

deterministi
 ones using the powerset 
onstru
tion.

Proposition 6.6 For a tree language L � T

�

the following are equivalent:

1. L is a

epted by a non{deterministi
 LR{tree automaton

2. L is a

epted by a deterministi
 LR{tree automaton

(Exer
ise)

Instead of working from the leafs to the root, we 
an also work in the other

dire
tion:

De�nition 6.7 An RL{tree automaton A = (Q;�; I;�; F ) 
onsists of

� a �nite set of states Q

� an alphabet with arity fun
tion �

� a set I � Q of initial states

� a transition assignment � that assigns to ea
h a 2 �

n

for n > 0 a

fun
tion �

a

: Q! 2

Q

n

� a �nal assignment F : �

0

! 2

Q

.

A run of A on t 2 T

�

is a mapping ` : dom(t)! Q su
h that

(`(u0); : : : ; `(u(n� 1))) 2 �

a

(`(u)) where a = t(u) has arity n:

This run is su

essful i�

� `(") 2 I,

� `(u) 2 F (t(u)) for all leafs u.

88 Mar
h 3, 2005



6.2. AUTOMATA ON FINITE TREES

L(A) = ft 2 T

�

j there is a su

essful run of A on tg:

A is deterministi
 i�

� jIj = 1

� j�

a

(q)j = 1 for all n > 0; a 2 �

n

, and q 2 Q

Proposition 6.8 For a tree language L � T

�

the following are equivalent:

1. L is a

epted by an LR{tree automaton.

2. L is a

epted by an RL{tree automaton

Proof:

\1) 2" Let A = (Q;�; I;�; F ) be an LR tree{automaton. We 
onsider the

RL tree{automaton B = (Q;�; F;�

0

; I) where

�

0

a

: q 7! f(q

1

; : : : ; q

n

) j q 2 �

a

(q

1

; : : : ; q

n

)g

It is easy to see that any su

essful run of A on a tree t is also a

su

essful run of B on this tree and vi
e versa.

\2) 1" 
an be shown a

ordingly.

Example 6.9 Let A be the LR{tree automaton of Example 6.5. The 
or-

responding RL{tree automaton B = (Q;�; I

0

;�

0

; F

0

) is de�ned as follows

� Q = f0; 1; 2g

� � = fx; y;�;+; �g,

� I

0

= f1g

� �

�

(q) = fq

0

2 Q j �

�

(q

0

) = qg

= fq

0

j �q

0

mod 3 = qg = fq

0

2 Q j q

0

= �q mod 3g
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� �

+

(q) = f(q

0

; q

00

) j q = q

0

+ q

00

mod 3g,

� �

�

(q) = f(q

0

; q

00

) j q = q

0

� q

00

mod 3g,

� F

0

(x) = 1 and F

0

(y) = 2

Note: Although the LR{tree automaton A is deterministi
, the 
orrespond-

ing RL{tree automaton is not deterministi
:

e.g. �

+

(1) = f(0; 1); (1; 0); (2; 2)g

We will show that deterministi
 RL{tree automata are weaker than non{

deterministi
 ones.

Example 6.10 Not every language a

epted by a non{deterministi
 RL{

tree automaton 
an also be a

epted by a deterministi
 RL{tree automaton.

� = fx; y

arity 0

; f

arity 2

g;

L = f

f

xyy

x

,

f

g

� The following non{deterministi
 RL{tree automaton a

epts L:

A = (fq

0

; q

1

; q

x

; q

y

g;�; fq

0

; q

1

g

non{det.

;�; F )

where

�

f

(q

0

) = f(q

x

; q

y

)g

�

f

(q

1

) = f(q

y

; q

x

)g

�

f

(q

x

) = �

f

(q

y

) = ;

F (x) = fq

x

g;

F (y) = fq

y

g:

� Assume that B = (Q

0

;�; fig;�

0

; F

0

) is a deterministi
 RL{tree automa-

ton for L. Let (q

0

; q

00

) = �

0

f

(i). Sin
e

i

q

0

q

00

x

f

y

2 L, we know that
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q

0

2 F (x). Sin
e

q

00

i

q

0

f

x
y

2 L, we know that q

00

2 F (x). But

then B also a

epts

q

00

i

q

0

f

x
x

62 L:

Deterministi
 and non{deterministi
 LR{tree automata as well as non{deterministi


RL{tree automata a

ept the same 
lass of tree languages. Deterministi


RL{tree automata a

ept a smaller 
lass.

De�nition 6.11 The tree language L � T

�

is 
alled re
ognizable i� it is

a

peted by an LR{tree automaton.

Example 6.12 There are non{re
ognizable tree languages. To show this, we


onsider an alphabet � with arity fun
tion su
h that j�

0

j > 0 and j�

2

j > 0.

Thus T

�

is in�nite.

For f 2 �

2

we de�ne L = ff(t; t) j t 2 T

�

g and show that L is not re
ogniz-

able.

Assume that L is re
ognizable. Let A = (Q;�; I;�; F ) be a deterministi


LR{tree automaton for L. For every tree t 2 T

�

we 
onsider the run ` on t

that labels ea
h leaf u with `(u) = I(t(u)). Let q

t

= `("). Sin
e Q is �nite

and T

�

is in�nite, there are trees t 6= t

0

su
h that q

t

= q

t

0

. Consider the run

of A on the following trees:

�

f

(q

t

; q

t

) f

t t

q

t

q

t

�

f

(q

t

; q

t

0

) f

t

q

t

t

0

q

t

0

(a) (b)

Sin
e the tree in (a) belongs to L we have that �

f

(q

t

; q

t

) 2 F . But then the

automaton A a

epts also the tree in (b), whi
h does not belong to L.

Mar
h 3, 2005 91
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6.3 Regular tree languages

Re
ognizable languages of �nite words 
an be des
ribed using regular ex-

pressions. A similar 
hara
terization 
an be shown for re
ognizable tree lan-

guages. To this purpose we must introdu
e appropriate operations on tree

languages.

Re
all:

� ; 2 Reg

�

, fag 2 Reg

�

for all a 2 �

� L

1

; L

2

2 Reg

�

) L

1

[ L

2

; L

1

� L

2

; L

1

�

2 Reg

�

Proposition 6.13

1. The empty tree language is re
ognizable

2. For every a 2 �

0

the language f

a

g is re
ognizable.

Proof:

1. Use an LR{tree automaton with F = ;.

2. LR{tree automaton where:

� Q = f0; 1g

� I(a) = 1, I(b) = 0 for all b 2 �

0

n fag

� �

f

(q

1

; : : : ; q

n

) = ; for all (q

1

; : : : q

n

) 2 Q

n

; f 2 �

n

; n > 0

� F = f1g

Proposition 6.14 The 
lass of re
ognizable tree languages is 
losed under

union, interse
tion, and 
omplement.

Proof: similar to the 
ase of words

1. Union: take the union of the automata (Exer
ise).

2. Complement: use deterministi
 LR{tree automata and ex
hange �nal

states with non{�nal states.
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Next, we de�ne 
on
atenation of tree languages.

Notation: a tree

: : :

t

1

t

n

f

is written as f(t

1

; : : : ; t

n

).

De�nition 6.15 Let � be an alphabet with arity fun
tion and let x =

(x

1

; : : : ; x

k

) be a k{tuple of elements of �

0

.

1. For t 2 T

�

and L

1

; : : : ; L

k

� T

�

we de�ne t �

x

(L

1

; : : : ; L

k

) � T

�

by

indu
tion:

� t 2 �

0

: t =

x

i

: t �

x

(L

1

; : : : ; L

k

) := L

i

t 6=

x

i

for all i : t �

x

(L

1

; : : : ; L

k

) := ftg

� t = f(t

1

; : : : ; t

n

) :

t �

x

(L

1

; : : : ; L

k

) := ff(t

0

1

; : : : ; t

0

n

) j t

0

i

2 t

i

�

x

(L

1

; : : : ; L

k

)g

2. For L; L

1

; : : : ; L

k

� T

�

we de�ne

L �

x

(L

1

; : : : ; L

k

) :=

[

t2L

t �

x

(L

1

; : : : ; L

k

)

A tree in L �

x

(L

1

; : : : ; L

k

) is obtained from a tree t 2 L by repla
ing ea
h

leaf with label

x

i

by some tree in L

i

.

Example:

f f

2 �

2

(x; x)g �

x

fa; b

2 �

0

g = ff(a; a); f(a; b); f(b; a); f(b; b)g:

Note: di�erent o

urren
es if x

i

may be repla
ed by di�erent elements of

L

i

. In parti
ular:

ff(x; x)g �

x

T

�

= ff(t; t

0

) j t; t

0

2 T

�

g

6= ff(t; t) j t 2 T

�

g:

Proposition 6.16 If L; L

1

; L

2

; : : : ; L

k

are re
ognizable tree languages, then

so L �

x

(L

1

; : : : ; L

k

).
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Proof: Given an RL{tree automaton for L; L

1

; : : : ; L

k

we 
onstru
t an RL{

tree automaton for the 
on
atenation.

Idea:
x

2

t

q

1

q

2

i 2 I

t

1

t

2

x

1

q

1

2 F (x

1

)

q

2

2 F (x

2

)

here we 
ontinue

with the automata

for L

1

and for L

2

LetA = (Q;�; I;�; F ) be an RL{tree automaton for L andA

i

= (Q

(i)

;�; I

(i)

;

�

(i)

; F

(i)

) be an RL{tree automaton for L

i

(i = 1; : : : ; k). W.l.o.g. the sets

of states are disjoint. The following automaton

B = (Q [Q

(1)

[ : : : [Q

(k)

;�; I;�

0

; F

0

)

is an RL{tree automaton for the 
on
atenation.

� for a 2 �

n

with n > 0:

{ for q 2 Q

(j)

: �

0

a

(q) = �

(j)

a

(q)

{ for q 2 Q : �

0

a

(q) = �

a

(q) [

[

j with

q 2 F (x

j

)

f�

(j)

a

(i) j i 2 I

(j)

g

� for a 2 �

0

:

{ for a 62 fx

1

; : : : ; x

k

g:

F

0

(a) = F (a) [ F

(1)

(a) [ F

(2)

(a) [ : : : [ F

(k)

(a) [

fq 2 Q j q 2 F (x

j

) for some j; 1 � j � k and

F

(j)

(a) \ I

(j)

6= ;

| {z }

a

2 L

j

g

{ for a 2 fx

1

; : : : ; x

k

g:

F

0

(a) = F

(1)

(a) [ F

(2)

(a) [ : : : [ F

(k)

(a) [

fq 2 Q j q 2 F (x

j

) for some j; 1 � j � k and

F

(j)

(a) \ I

(j)

6= ;g
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When de�ning regular languages, we will 
onsider two spe
ial 
ases of the

general 
on
atenation introdu
ed in De�nition 6.15:

1. Applying an f 2 �

k

, k > 0, to tree languages L

1

; : : : ; L

k

:

f(L

1

; : : : ; L

k

) := f(x

1

; : : : ; x

k

) �

(x

1

;:::;x

k

)

(L

1

; : : : ; L

k

)

2. x = x, i.e. tuple of length 1 : L �

x

L

0

.

The Kleene{Star 
an also be generalized to tree languages:

De�nition 6.17 Let L � T

�

and x 2 �

0

. We de�ne :

� L

0;x

= fxg

� L

n+1;x

= L

n;x

[ L �

x

L

n;x

� L

�;x

=

S

n�0

L

n;x

Proposition 6.18 If L is a re
ognizable tree language, then so is L

�;x

.

Proof: Let A = (Q;�; I;�; F ) be an RL{tree automaton for L.

Idea:

x

i 2 I

t

00

q

3

q

4

t

0

q

2

x

q

1

t

x

x

If q

i

2 F (x), then we 
an either

stop or 
ontinue with an initial

state.

We de�ne B = (Q [ f̂�g;�; I

0

;�

0

; F

0

) where f̂�g 62 Q and
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� for a 2 �

n

with n > 0:

�

0

a

(q) = �

a

(q) [

(

; q 62 F (x)

S

i 2 I

�

a

(i) q 2 F (x)

�

0

a

(̂�) = ;

� for all a 2 �

0

{ a 6= x:

F

0

(a) = F (a) [ fq 2 Q j q 2 F (x) and F (a) \ I

| {z }

a

2 L

6= ;g

{ for a = x:

F

0

(x) = F (x) [ f̂�g

� I

0

= I [ f̂�g

Note: the state �̂ in F

0

(x) and I

0

ensures that

x

is a

epted.

De�nition 6.19 Let � be an alphabet with arity fun
tion, Z a set of sym-

bols of arity 0 with � \ Z = ;, and de�ne

b

� := � [ Z. Reg(T

�

; Z) is the

smallest 
lass of tree languages over

b

� su
h that

1. ; 2 Reg(T

�

; Z),

2. fxg 2 Reg(T

�

; Z) for all x 2 �

0

[ Z,

3. L

1

; L

2

2 Reg(T

�

; Z)) L

1

[ L

2

2 Reg(T

�

; Z),

4. L

1

; L

2

2 Reg(T

�

; Z) and z 2 Z ) L

1

�

z

L

2

2 Reg(T

�

; Z),

5. L 2 Reg(T

�

; Z) and z 2 Z ) L

�;z

2 Reg(T

�

; Z),

6. n > 0; f 2 �

n

; L

1

; : : : ; L

n

2 Reg(T

�

; Z)) f(L

1

; : : : L

n

) 2 Reg(T

�

; Z).

The language L � T

�

is regular i� there is a set of auxiliary symbols Z of

arity 0 su
h that L 2 Reg(T

�

; Z).
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Proposition 6.20 For L � T

�

the following are equivalent:

1. L is regular

2. L is re
ognizable

Proof:

\1) 2" Follows from what we have shown.

\2) 1" Let A = (Q;�; I;�; F ) be an RL{tree automaton with L = L(A).

W.l.o.g. Q is of the form f1; : : : ; kg and Q \� = ;. We de�ne Z := Q

(where q 2 Q is assumed to be of arity 0). Let A

0

= (Q;�[Z; I;�; F

0

)

where F

0

(q) = fqg. Thus, subtrees 
an be repla
ed by a leaf q if the


orresponding node in the run gets label q.

For K � Q; 0 � h � k and i 2 Q let L(K; h; i) be the set of all trees

t 2 T

�[K

su
h that there is a run ` of A

0

on t with

� `(�) = i

� `(u) � h for all u 6= " that are not leafs

� `(u) 2 F

0

(t(u)) for all leafs u

L(K; h; i) 
onsists of the trees that may have additional leafs labelled

with elements of K. A run of A

0

on this tree that begins with i must

stop with a state in F

0

(t(u)) for ea
h leaf u (in parti
ular, if t(u) = q

then `(u) = q) and the intermediate states must be � h. Obviously,

the following holds:

L(A) =

[

i2I

L(;; k; i)

Thus, it is suÆ
ient to show that all the languages L(K; h; i) belong to

Reg(T

�

; Z)

Indu
tion base h = 0: In this 
ase, L(K; 0; i) 
annot 
ontain trees

having a node that is neither the root nor a leaf (sin
e a run

must label su
h an intermediate node with a state q > 0). Thus,

L(k; 0; i) is �nite. It is easy to see that �nite sets of trees are

regular.
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Indu
tion step h > 0: we have the following:

L(K; h+ 1; i) = L(K; h; i) [

L(K [ fh+ 1g; h; i) �

h+1

L(K [ fh+ 1g; h; h+ 1)

�;h+1

�

h+1

L(K; h; h+ 1)

By indu
tion and the de�nition of Reg(T

�

; Z) this shows that

L(k; h+ 1; i) 2 Reg(T

�

; Z)

2 L(K [ fh + 1g; h; h+ 1)

� h

i 2 I

h+ 1

� h

h+ 1

� h

� h

.

.

.

h+ 1

.

.

.

h+ 1

2 L(K [ fh+ 1g; h; i)

2 L(K [ fh+ 1g; h; h+ 1)

2 L(K; h; h+ 1)

Another interesting 
losure property of re
ognizable tree languages is 
losure

under alphabet renaming: Let �

(1)

;�

(2)

be alphabets with arity fun
tions and

' : �

(1)

! �

(2)

a mapping, su
h that '(�

(1)

n

) � �

(2)

n

for all n � 0. For a tree

t 2 T

�

(1)

we de�ne '(t) 2 �

(2)

as follows:

'(t) : dom(t)! �

(2)

'(t)(u) = '(t(u))

Proposition 6.21 If L � T

�

(1)

is re
ognizable, then so is '(L) = f'(t) j t 2

Lg � T

�

(2)

.
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Proof: Let A = (Q;�

(1)

; I;�; F ) be an LR{tree automaton for L. Then

A

0

= (Q;�

(2)

; I

0

;�

0

; F ) is an LR{tree automaton for '(L) where

� for a 2 �

(2)

0

:

I

0

(a) =

[

a

0

2 �

(1)

0

'(a

0

) = a

I(a

0

);

� for a 2 �

(2)

n

, n > 0:

�

0

a

(q

1

; : : : ; q

n

) =

[

a

0

2 �

(1)

n

'(a

0

) = a

�

a

0

(q

1

; : : : ; q

n

):

Proposition 6.22 For regular languages, the equivalen
e and emptiness

problem is de
idable.

Proof: Sin
e the regular/re
ognizable tree languages are 
losed under Boolean

operations, the equivalen
e problem 
an be redu
ed to the emptiness prob-

lem.

Emptiness problem: Let A = (Q;�; I;�; F ) be a deterministi
 LR{tree

automaton for the language L with jQj = k.

Claim: L(A) 6= ; i� there is a tree t of depth � k with t 2 L(A).

Sin
e � is �nite, there are only �nitely many trees t 2 T

�

of depth � k. For

ea
h of these trees we 
an e�e
tively test t 2 L(A).

Proof of the 
laim:

\(" is trivial.
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\)" Let t be a tree of minimal size with t 2

L(A). Assume that A has depth > k, i.e.

t 
ontains at least one path of length >

k. Let ` be a su

essful run of A on t.

Sin
e we have only k states there are two

di�erent positions u; u

0

on the path su
h

that q := `(u) = `(u

0

).

u

u

0

t

q

q

If we repla
e in t the subtree t

u

by t

u

0

, then

we get a smaller tree t

0

for whi
h A also

has a su

essful run. This 
ontradi
ts the

minimality of t.

q

t

0

Note: this yields an exponential algorithm for the emptiness problem. There

is a linear{time algorithm for the emptiness problem (Exer
ise).
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Chapter 7

Automata on in�nite trees

For the sake of simpli
ity, we restri
t the attention to binary trees, i.e. � is

an alphabet with arity fun
tion su
h that � = �

2

. All the results 
an easily

be extended to the general 
ase.

An in�nite tree over � is a mapping f0; 1g

�

! �. With T

!

�

we denote the

set of all in�nite trees over �. An in�nite tree over � is 
alled !{tree. An

!{tree language is a subset of T

!

�

.

!{tree languages 
an be obtained by in�nite iteration.

De�nition 7.1 Let Z = fz

1

; : : : ; z

k

g be a set of symbols of arity 0 and �

an alphabet of binary symbols. Let U; U

1

; : : : ; U

k

� T

� [ Z

be tree languages

over � [ Z. The !{tree language

U �

(z

1

;:::;z

k

)

(U

1

; : : : ; U

k

)

!;(z

1

;:::;z

k

)


onsists of all !{trees t 2 T

!

�

for whi
h there exists a sequen
e t

0

; t

1

; t

2

; : : : of

trees in T

!

�[Z

su
h that

1. t

0

2 U

2. For all i � 0 : t

i+1

2 t

i

�

(z

1

;:::;z

k

)

(U

1

; : : : ; U

k

)

3. t is the limit of the sequen
e, i.e. for all u 2 f0; 1g

�

there is an m � 0

su
h that
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� u 2 dom(t

m

) and t(u) 2 � (i.e. u is not a leaf of t

m

(u))

� t(u) = t

m

(u)

Example 7.2 Z = fz

1

; z

2

g; U = ff(z

1

; z

2

)g; U

1

= fg(z

1

; z

1

)g; U

2

= fh(z

2

; z

2

)g

f

gz

1

z

2
h

z

1

z

1

z

2

z

2

t

1

=t

0

=

ff

z

1

z

1

z

1

z

1

z

2

z

2

z

2

z

2

g g

hh

g

h

t

2

=

There is only one possible sequen
e, whose limit is:

.

.

.

g g g g

hh h h

g g

h h

f

g

h

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

7.1 B�u
hi{ and Rabin{tree automata

Sin
e our in�nite trees have no leafs, our automata start at the root, i.e. they

generalize RL{tree automata.

De�nition 7.3

1. A B�u
hi{tree automaton over the alphabet � (with � = �

2

) is of the

form A = (Q;�; I;�; F ) where

� Q;�; I;� are as for RL{tree automata

� F � Q is a set of �nal states
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2. A Rabin{tree automaton over the alphabet � (with � = �

2

) is of the

form A = (Q;�; I;�;
), where

� Q;�; I;� are as for RL{tree automata

� 
 = f(F

1

; G

1

); : : : ; (F

n

; G

n

)g with F

i

; G

i

� Q

(Compare this to exer
ise 55.)

A run ` of a (B�u
hi{ or Rabin{) tree automaton on the tree t 2 T

!

�

is de�ned

as follows:

` : f0; 1g

�

! Q su
h that (`(u0); `(u1)) 2 �

f

(`(u)) where f = t(u)

f

u

q = `(u)

q

1

= `(u0)

q

2

= `(u1)

(q

1

; q

2

) 2 �

f

(q)

Thus a run is itself an in�nite tree over the alphabet Q (where all q 2 Q have

arity 2). The run ` of a B�u
hi tree{automaton is 
alled su

essful i�

� `(") 2 I

� every path in ` 
ontains in�nitely often �nal states

The run ` of the Rabin{tree automaton is 
alled su

essful i�

� `(") 2 I

� for every path in ` there is an i (1 � i � n) su
h that

{ the path 
ontains in�nitely often states from F

i

{ none of the states in G

i

o

urs in�nitely often in the path
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Thus, the a

eptan
e 
ondition for B�u
hi/Rabin automata on !{words is

applied to paths in the in�nite tree.

L

!

(A) := ft 2 T

!

�

j there is a su

essful run of A on tg

L � T

!

�

is 
alled B�u
hi{re
ognizable (Rabin{re
ognizable) i� there is a B�u
hi{

(Rabin{) tree automaton A su
h that L

!

(A) = L

Proposition 7.4 Every B�u
hi{re
ognizable language is also Rabin{re
ognizable.

Proof: Let A = (Q;�; I;�; F ) be a B�u
hi tree{automaton with L = L

!

(A).

The Rabin{tree automaton A

0

:= (Q;�; I;�; f(F; ;)g) obviously a

epts L.

The following examples illustrate the di�eren
e between B�u
hi{ and Rabin{

tree automata.

Example 7.5 � = fa; bg and

L

1

= ft 2 T

!

�

j there is a path in t 
ontaining in�nitely many a'sg:

We want to design a B�u
hi tree automata for L

1

.

Idea: the automata \guesses" the path 
ontaining in�nitely many a's

A

1

= (f i; f

states on

the guessed

path

;

2

other

paths

g;�; fig;�

1

; f f

have

seen a

;

2

on another

path

g)

�

1

a

: i 7!f(f;2); (2; f)g �

1

b

: i 7!f(i;2); (2; i)g

f 7!f(f;2); (2; f)g f 7!f(i;2); (2; i)g

2 7!f(2;2)g 2 7!f(2;2)g

The \guessed" path is labelled by states from fi; fg with label f immediately

after a node with a was rea
hed. Thus the path in the run 
ontains in�nitely

many f 's i� on the 
orresponding path in the tree there are in�nitely many

a's. The other paths are labelled with 2 ex
ept for a �nite initial segment.

Thus, su
h paths in the run 
ontain in�nitely often 2.
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Example 7.6 � = fa; bg and

L

2

= ft 2 T

!

�

j every path in t 
ontains only �nitely many a'sg:

Obviously, L

2

= T

!

�

n L

1

. The following is a Rabin{tree automaton for L

2

:

A

2

= (fi; fg;�; fig;�

2

; f(fi; fg;


2

g) where

�

2

a

: i 7! f(f; f)g

f 7! f(f; f)g

f means \have seen a"

�

2

b

: i 7! f(i; i)g

f 7! f(i; i)g

i means \have seen b"




2

= f( fi; fg

no 
ondition

on states seen

in�nitely often

; ffg

f restri
ted to

o

ur �nitely

often in ea
h path

)g

For every path, this path 
ontains in�nitely many a's i� in the 
orresponding

run this path 
ontains in�nitely many f 's.

Proposition 7.7 The language L

2

of Example 7.6 is Rabin{re
ognizable

but not B�u
hi{re
ognizable.

Proof: It remains to show that L

2

is not B�u
hi{re
ognizable. Assume that

A = (Q;�; I;�; F ) is a B�u
hi tree{automaton for L

2

. Let n be su
h jQj < n.

We 
onstru
t a tree t

(n)

: f0; 1g

�

! � as follows:

t

(n)

(u) :=

�

a u 2 U

n

b u 62 U

n

where

U

n

:= f"g [ f1

m

1

0 j m

1

> 0g [ f1

m

1

01

m

2

0 j m

1

> 0; m

2

> 0g

[ : : : [ f1

m

1

01

m

2

0 � � �1

m

n

0 j m

1

> 0 : : :m

n

> 0g

This tree 
ontains in�nitely many a's, but in every path there are at most

n + 1 a's. Thus, t

(n)

2 L

2

.
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1

m

1

01

m

2

0

a

b

a

a

b

a

b

b

a

1

m

1

1

m

1

0

1

m

1

01

m

2

To rea
h an a that is not at the

root, we must go at least on
e to

the right, and then to the left. The

next a is rea
hed in the same way.

After going n times to the left, the

�nal a is rea
hed.

Sin
e t

(n)

2 L

2

, there is a su

essful run ` of A on t

(n)

. We use ` to 
onstru
t

a path in t

(n)

:

� let m

1

> 0 be minimal with `(1

m

1

) = f

1

2 F . Su
h a �nal state exists

sin
e every path in ` 
ontains in�nitely many �nal states.

� assume that m

1

; m

2

; : : : ; m

i

> 0 (i < n) are already de�ned. Let

m

i+1

> 0 be minimal with `(1

m

1

01

m

2

0 � � �1

m

i

01

m

i+1

) = f

i+1

2 F . This

de�nes m

1

; : : : ; m

n

> 0 su
h that the following holds:

f

1

2 F

a

b

a

a

b

a

b

b

a

1

m

1

1

m

1

0

1

m

1

01

m

2

1

m

1

01

m

2

0

f

2

2 F
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Sin
e jQj < n, there are i < j su
h

that f

i

= f

j

. Thus, we have the

following situation:

f

i

a

t

(n)

u

f

i

uv

If we repla
e in t

(n)

the tree at

position uv by t

(n)

u

, then we get

a new tree whi
h still has a su
-


essful run. If we iterate this an

in�nite number of times, we ob-

tain a tree that is also a

epted by

A and has a path 
ontaining in-

�nitely many a's.  

uvvv

uv

f

i

a

a

a

t

(n)

u

f

i

.

.

.

f

i

f

i

uvv

Corollary 7.8 The 
lass of B�u
hi{re
ognizable !{tree{languages is not 
losed

under 
omplement.

Proof: L

1

is B�u
hi{re
ognizable, but L

2

= T

!

�

n L

1

is not.

Proposition 7.9 The 
lass of Rabin{re
ognizable tree{languages is 
losed

under 
omplement.

The proof is quite involved. There are several approa
hes for proving this

(Handbook arti
le by W. Thomas). Why is this harder to prove than for

B�u
hi{automata on words? The reason lies in the quanti�er on paths in the

de�nition of a su

essful run:
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\For all paths the a

eptan
e 
ondition is satis�ed."

If we negate this, we obtain:

\There exists a path, su
h that the a

eptan
e 
ondition is not satis�ed."

In addition to transforming \not satis�ed" into \satis�ed", one must also

transform \exists a path" into \for all paths".

7.2 De
idability results

Goal: redu
e logi
al satis�ability problems to the emptiness problem for the

automata.

Thus, we want the emptiness problem to be de
idable. We �rst show de
id-

ability for B�u
hi tree{automata sin
e the proof is simpler and also yields a


hara
terization of B�u
hi{re
ognizable tree{languages.

Proposition 7.10 The emptiness problem for B�u
hi{re
ognizable !{tree

languages is de
idable.

First we show another result, from whi
h Prop. 7.10 
an easily be dedu
ed.

Let A = (Q;�; I;�; F ) be a B�u
hi tree{automaton, where F = ff

1

; : : : ; f

m

g.

Let ` : f0; 1g

�

! Q be a su

essful run of A on the tree t 2 T

!

�

. We

de
ompose t into �nite subtrees, whi
h are a

epted by automata working

on �nite trees.

Let u 2 f0; 1g

�

. We are interested in where the run rea
hes for the �rst time

a �nal state below u:

D

u

:= fw 2 f0; 1g

�

j `(uv) 62 F for all " < v � wg

Sin
e D

u

is 
losed under pre�x, it 
an be viewed as the domain of the tree.

This tree is �nitely bran
hing and it does not 
ontaining an in�nite path

(otherwise ` would not be su

essful). K�onig's Lemma implies that D

u

is

�nite.

D

+

u

:= D

u

[ fw� j � 2 f0; 1g ^ w 2 D

u

^ w� 62 D

u

g

By de�nition of D

u

we have `(w�) 2 F for all w� 2 D

+

u

nD

u

.
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Example: 
onsider a run of the B�u
hi tree{automaton of Ex. 7.5 on the

following tree:

2

.

.

.

.

.

.

.

.

.

a

b

b

a

b

b

b

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

F = f2; fg

i

i

i

f

.

.

.

.

.

.

2

222

a

D

"

= f"; 0; 00g D

1

= f"g

D

+

"

nD

"

= f1; 01; 000; 001g D

+

1

nD

1

= f0; 1g:

For u 2 f0; 1g

�

we de�ne the �nite tree

b

t

u

: D

+

u

! � [ F

b

t

u

(w) =

�

t(uw) if w 2 D

u

`(uw) if w 2 D

+

u

nD

u

Thus,

b

t

u

2 T

� [ F

, where f 2 F is a symbol of arity 0.

Example:

^

t

1

b

b

a

a

2

2

2

2

2

f

^

t

�

For every q 2 Q we de�ne the RL{tree automaton A

q

= (Q;�[F; fqg;�;

b

F )

where

b

F (f) = f for all f 2 F .

Let L

q

:= L(A

q

) � T

� [ F

. Then the following holds: If `(u) = q, then

b

t

u

2 L

q

.
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Example:

f

2

2

b

b

a

i

i

i

f

2

2

2

2

su

essful run of A

i

This shows that:

t 2

b

L := (

[

i 2 I

L

i

) �

(f

1

;:::;f

m

)

(L

f

1

; : : : ; L

f

m

)

!; (f

1

;:::;f

m

)

Conversely, it is easy to see that any element of

b

L belongs to L

!

(A). Thus,

we have shown that

b

L = L

!

(A).

Proposition 7.11 For an !{tree language L � T

!

�

the following are equiv-

alent:

1. L is B�u
hi{re
ognizable

2. There are re
ognizable tree languages L

0

; : : : ; L

m

� T

� [ F

for some

alphabet F = ff

1

; : : : ; f

m

g of symbols of arity 0 su
h that:

L = L

0

�

(f

1

;:::;f

m

)

(L

1

; : : : ; L

m

)

!;(f

1

;:::;f

m

)

Proof:

\1) 2" we have just shown.

\2) 1" use RL{tree automata for L

0

; : : : ; L

m

to 
onstru
t a B�u
hi tree{

automaton for L (exer
ise).
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Proof of Prop 7.10: LetA = (Q;�; I;�; F ) be a B�u
hi tree{automaton for

L. Let the tree languages L

q

be de�ned as above. We su

essively eliminate

states that 
annot o

ur in a su

essful run.

1. The automaton A

1

= (Q

1

;�; I

1

;�

1

; F

1

) is obtained from A by elim-

inating those states q 2 Q with L

q

= ;. Sin
e A

q

is an automaton

on �nite trees, L

q

= L(A

q

) = ; is de
idable (Prop 6.22). To be more

pre
ise:

Q

1

= Q n fq 2 Q j L

q

= ;g

I

1

= I \Q

1

F

1

= F \Q

1

�

1

a

: Q

1

! 2

Q

1

�Q

1

: q 7! �

a

(q) \Q

1

�Q

1

;

Why does L

q

= ; imply that q 
annot o

ur on a su

essful run? If `

is a su

essful run and `(u) = q, then

b

t

u

2 L

q

, and thus L

q

= ;. This

shows that L

!

(A

1

) = L

!

(A).

2. By iterating this, we obtain a sequen
e A

1

;A

2

; : : : of

B�u
hi tree{automata with L

!

(A

i

) = L

!

(A). Sin
e Q is �nite, this

sequen
e be
omes stable after a �nite number of steps, i.e. one rea
hes

an automaton A

n

su
h that

L

!

(A) = L

!

(A

n

) and L

q

6= ; for all q 2 Q

n

(note: Q

n

= ; is possible).

3. We 
laim: L

!

(A

n

) 6= ; i� I

n

6= ;.

Proof of the 
laim: We know from Prop 7.11:

L

!

(A

n

) =

 

[

i2I

n

L

i

!

�

(f

1

;:::;f

m

)

(L

f

1

; : : : ; L

f

m

)

!;(f

1

;:::;f

m

)

;

Obviously, I

n

= ; implies that this expression is empty. If I

n

6= ;,

then

S

i 2 I

L

i

6= ; sin
e L

i

6= ; for all i 2 I

n

. I

n

6= ; also implies that

F

n

6= ; (sin
e for F

n

= ; all the sets L

q

are empty). Thus, there are

trees t

0

2

S

i 2 I

n

L

i

; t

1

2 L

f

1

; : : : ; t

m

2 L

f

m

for F

n

= ff

1

; : : : ; f

m

g 6= ;.

But then the tree

ft

0

g �

(f

1

;:::;f

m

)

(ft

1

g; : : : ; ft

m

g)

!;(f

1

;:::;f

m

)

belongs to L

!

(A).
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Example: automaton from Example 7.5:

b

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ba

b

a

a

b b

a b b b b bb

2 fa(f;2)g �

(f;2)

(fa(f;2)g; fb(2;2)g)

!;(f;2)

Proposition 7.12 The emptiness problem for Rabin{re
ognizable !{tree

languages is de
idable.

Proof: Let A = (Q;�; I;�;
) be a Rabin{tree automaton. A state q 2 Q is


alled a
tive i� it 
an be rea
hed from some state and does not only reprodu
e

itself. To be more pre
ise: q 2 Q is a
tive if there exist a; b 2 � and states

q

0

; q

1

; q

2

; q

0

2 Q su
h that

� (q; q

0

) 2 �

b

(q

0

) or (q

0

; q) 2 �

b

(q

0

) (rea
hable)

� (q

1

; q

2

) 2 �

a

(q) where fq

1

; q

2

g 6= fqg (does not reprodu
e itself)

Otherwise, q is passive. Passive states allow only transitions of the form

�

a

(q) = f(q; q)g or they 
an only o

ur at the root of a su

essful run. Note

that it is obviously de
idable whether a given state is a
tive or not. We show

de
idability of the emptiness problem by indu
tion on the number of a
tive

states in A.

Indu
tion base: no a
tive states

A su

essful run then has the following

form:

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

2

q

2

i

q

1

q

1

q

1

q

2
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This means that there are states i; q

1

; q

2

2 Q su
h that

� there are a; b; 
 2 � with

{ (q

1

; q

2

) 2 �

a

(i)

{ (q

1

; q

1

) 2 �

b

(q

1

)

{ (q

2

; q

2

) 2 �




(q

2

)

� i 2 I

� there are (F;G); (F

0

; G

0

) 2 
 with q

1

2 F and q

1

=2 G, q

2

2 F

0

and q

2

=2 G

0

.

Obviously it is de
idable whether su
h a triple i; q

1

; q

2

exists.

Indu
tion step: n > 0 a
tive states

For a su

essful run ` : f0; 1g

�

! Q there are three possibilities.

Case 1: one of the a
tive states does not o

ur in `

Then ` is also a su

essful run of the automaton A

�

q

obtained from A

by deleting q.

A

�

q

= (Q

0

;�; I \Q

0

;�

0

;


0

) where

Q

0

= Q n fqg

�

0

a

: Q

0

! 2

Q

0

� Q

0

: �

0

a

(p) = �

a

(p) \ (Q

0

�Q

0

)




0

= f(F

0

; G

0

) j

there is (F;G) 2 
 su
h that F

0

= F \Q

0

and G

0

= G \Q

0

g

It 
an be de
ided whether this 
ase holds for some su

essful run by


onsidering for every state q the automaton A

�

q

and then de
iding the

emptiness problem for A

�

q

(by indu
tion this is de
idable sin
e A

�

q

has

less a
tive states).

Case 2: In ` there is a node u su
h that `(u) = q and q is a
tive and

the subtree `

u

does not 
ontain the a
tive state q

0

(ex
ept possibly at

the root if q = q

0

).

Let

b

`

q

be the \tree" obtained from ` by pruning all bran
hes immedi-

ately below the �rst o

urren
e of q in ea
h path. (Note:

b

`

q

may have
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both �nite and in�nite paths). Then

b

`

q

�

q

`

u

is still a su

essful run!

How 
an we test whether su
h runs

b

`

q

and `

u

exist?

1. Existen
e of

b

`

q

b

`

q

is modi�ed to

~

`

q

by repla
ing the

leafs labelled with q by the tree:

q

q q q

q

q

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

An automaton that has

~

`

q

as su

essful run 
an be obtained as

follows:

~

A

q

= (Q;�; I;�

0

;


0

) where

� �

0

a

(q) = f(q; q)g and �

0

a

(p) = �

a

(p) for all p 6= q

� 


0

= 
 [ f(fqg; ;)g

We have L

!

(

~

A

q

) 6= ; i� there exists a run

~

`

q

. Obviously

~

A

q

has

one a
tive state less than A, and thus L

!

(

~

A

q

) 6= ; is de
idable by

indu
tion.

2. `

u

is a su

essful run of the automaton A

�

q; q

0

, whi
h is obtained

from A by removing q

0

from �. To be more pre
ise:

A

�

q; q

0

= (Q;�; fqg;�

0

;
) where

�

0

a

(p) = �

a

(p) \ (Q

0

�Q

0

) for all a 2 �; p 2 Q where

Q

0

= Q n fq

0

g

Again, A

�

q; q

0

has one a
tive state less than A sin
e q

0

is no longer

a
tive.

By indu
tion, we 
an test for all pairs (q; q

0

) of a
tive states, whether

~

A

q

and A

�

q; q

0

a

ept non{empty languages. If this is the 
ase, then A

has a su

essful run satisfying Case 2.

Case 3: There is at least one a
tive state and below every a
tive state in `

every other a
tive state o

urs.

Thus, there is a path � in ` su
h that every a
tive state o

urs in�nitely

often on �. Ex
ept at the beginning of �, no passive states 
an o

ur

on �. There must be a pair (F

0

; G

0

) 2 
 that a

epts �. Thus, F

0


ontains at least one a
tive state and none of the a
tive states o

urs
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in G

0

(i.e. G

0


ontains only passive states). Let q 2 F

0

be an a
tive

state.

The \tree"

b

`

q

is de�ned as in Case 2. Let u 2 f0; 1g

�

be su
h that

`(u) = q. The tree

b

`

u;q

is obtained from `

u

by pruning below every

o

urren
e of q that is not at the root.

Example:

b

`

0;q

=

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

q

` =

q q qq

qq

q

b

`

q

=

q q

.

.

.

.

.

.

q

1

q

1

q q

q

1

q

1

q

1

q

1

q

.

.

.

Obviously,

b

`

q

�

q

b

`

u;q

!;q

is a run of A. Why is it su

essful? Let � be a

path in this run.

Case a: � is an in�nite path in

b

`

q

or an in�nite �nal segment of �

belongs to

b

`

u;q

. Then this path is a

epted by some pair in 


sin
e an in�nite �nal segment of it also o

urs in a path in `.

Case b: Otherwise, q o

urs in�nitely often in �. In addition, a pas-

sive state 
an only o

ur at the beginning of �. Thus, (F

0

; G

0

)

a

epts �.

Existen
e of

b

`

q


an be tested as shown in Case 2.

Existen
e of

b

`

u;q

: Sin
e q in

b

`

u;q

has two di�erent fun
tions (at the root

and the leafs), we rename q at the root to a new state q

0

.

b

`

q

0

u;q

is obtained

from

b

`

u;q

by labelling the root with q

0

. As in the se
ond 
ase, we modify

b

`

q

0

u;q

to

~

`

q

0

u;q

. The automaton

~

A

q

0

;q

= (Q [ fq

0

g;�; fq

0

g;�

0

;


0

) with

� q

0

=2 Q

� �

0

a

(q

0

) := �

a

(q)

�

0

a

(q) := f(q; q)g

�

0

a

(q

0

) := �

a

(q

0

) for q

0

=2 fq; q

0

g
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� 


0

= 
 [ f(fqg; ;)g

has

~

`

q

0

u;q

as a su

essful run. It has one a
tive state less than A sin
e

q; q

0

are passive.

To sum up:

For a Rabin{tree automaton A we have L

!

(A) = ; i� the following holds:

� If A does not 
ontain a
tive states, then there does not exists a triple

i; q

1

; q

2

2 Q su
h that

{ i 2 I and

{ there is a; b; 
 2 � with (q

1

; q

2

) 2 �

a

(i), (q

1

; q

1

) 2 �

b

(q

1

), (q

2

; q

2

) 2

�




(q

2

)

{ there exist (F;G); (F

0

; G

0

) 2 
 su
h that q

1

2 F and q

1

=2 G,

q

2

2 F

0

, q

2

=2 G

0

� If A 
ontains at least one a
tive state, then for all a
tive states q:

{ L(A

�

q

) = ;

{ L(

~

A

q

) = ; or L(A

�

q;q

0

) = ; for all a
tive states q

0

, and

{ if there is a pair (F

0

; G

0

) 2 
 with q 2 F

0

and G

0


ontains only

passive states, then L(

~

A

q

) = ; or L(

~

A

q

0

;q

) = ;.
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Chapter 8

Tree{automata and logi
al

formulae

8.1 S2S logi


We extend S1S to a logi
 with 2 su

essor fun
tions. Instead of the interpre-

tation domain N (!) we use the in�nite binary tree.

De�nition 8.1

1. Formulae of the logi
 S2S are built like formulae of S1S, with the only

di�eren
e that

� the su

essor fun
tion s is repla
ed by two su

essor fun
tions s

0

and s

1

.

� The 
onstant 0 is repla
ed by the 
onstant ".

2. As interpretation domain we take the set f0; 1g

�

(the domain of in�nite

binary trees), where

� " is interpreted as " (the root)

� s

0

,s

1

are interpreted as s

0

: u 7! u0, s

1

: u 7! u1
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� < is interpreted as the pre�x order on f0; 1g

�

i.e. u < v i� 9w 2

f0; 1g

+

: uw = v

� P

1

; : : : ; P

n

are interpreted as subsets of f0; 1g

�

S2S{formulae 
an be used to de�ne !{tree languages. As in the 
ase of S1S

we use the alphabet � = f0; 1g

n

. Every element of � has arity 2. An S2S

interpretation I 
an be viewed as an !-tree t

I

with labels from �:

t

I

(u) := (b

1

; : : : ; b

n

) where b

i

=

�

1 u 2 P

i

I

0 u =2 P

i

I

:

De�nition 8.2 Let ' be a 
losed S2S{formula. Then,

L

!

(') := ft

I

2 T

!

�

j I j= 'g:

Some examples of S2S{formulae:

� Chain(X) : des
ribes subsets X of f0; 1g

�

su
h that all elements are

pre�x{
omparable.

Chain(X) : 8x 8y (X(x) ^X(y)) x < y _ x = y _ y < x)

� Path(X) : paths are maximal 
hains (no holes)

X � Y : 8x X(x)) Y (x)

X = Y : 8x X(x), Y (x)

Path(X) : Chain(X) ^ 8Y (X � Y ^ Chain(Y )) X = Y )

� In�niteChain(X)

In�niteChain(X) : Chain(X) ^ 8x (X(x)) 9y (x < y ^X(y)))

� Z = Pre�xClosure(X)

8z (Z(z), 9x (X(x) ^ (z � x)))

� Finite(X)

Finite(X) : 8Z (Z = pre�xClosure(X)) :9Y (Y � Z^In�niteChain(Y )))
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Why does this express �niteness of X ?

{ If X is in�nite, then so is its pre�x 
losure Z. Thus Z 
an be

viewed as in�nite tree. By K�onig's lemma it 
ontains an in�nite

path Y .

{ If X is �nite, then its pre�x 
losure is �nite, and thus 
annot


ontain an in�nite 
hain.

Example 8.3 n = 1, i.e. � = f0; 1g.

1. L

1

= ft 2 T

!

�

j there is a path in t 
ontaining in�nitely many 1'sg

(see Example 7.5)

'

1

= 9Y Path(Y ) ^ 8x (Y (x)) 9y (Y (y) ^ x < y ^ P

1

(y)))

2. L

2

= L

1

L

2

= L

!

(:'

1

)

Proposition 8.4 (Rabin) For an !{tree language L � T

!

�

the following are

equivalent

1. L is Rabin{re
ognizable.

2. L = L

!

(') for a 
losed S2S{formula '.

Proof: very similar to the proof of Prop. 5.4.

\1) 2" Let A = (Q;�; I;�;
) be a Rabin{tree automaton with Q =

fq

1

; : : : : : : ; q

m

g. For every q

j

we introdu
e a se
ond{order variable Y

j

with the intended interpretation:

x belongs to Y

j

if the run labels x by q

j

.
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The existen
e of a su

essful run 
an be expressed as follows:

9Y

1

: : :9Y

m

�

_

q

i

2I

Y

i

(")^

8x

^

i 6=j

:(Y

i

(x) ^ Y

j

(x))^

8x

_

(q

i

;q

j

)2�

a

(q

k

)

a2�

Y

k

(x) ^Q

a

(x) ^ Y

i

(s

0

(x)) ^ Y

j

(s

1

(x))^

8Z Path(Z))

_

(F;G)2


�

_

q

i

2F

8x (Z(x)) 9y (Z(y) ^ x < y ^ Y

i

(y)))^

^

q

i

2G

9x 8y (Z(y) ^ x < y ) :Y

i

(y))

�

�

\2) 1" As in the 
ase of S1S we redu
e S2S{formulae to S2S

0

{formulae.

Then the proof is by indu
tion on the stru
ture of S2S

0

{formulae. For

the indu
tion step one uses 
losure under Boolean operations and al-

phabet renaming for Rabin{re
ognizable languages.

Corollary 8.5 Validity in S2S is de
idable.

Instead of binary trees one 
an also 
onsider k{ary trees (k � 1). The results

for k = 2 
an easily be generalized to arbitrary k. In parti
ular, SkS (k

su

essor fun
tions) is de
idable.
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