

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 1

Prof. Dr.-Ing. Franz Baader/Dr. rer. nat. Marcel Lippmann Summer Semester 2016

Exercise 1

Consider the reduction system (M, \rightarrow) with $M = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, C_1, C_2, C_3, C_4, D, E\}$ and $\rightarrow \subseteq M \times M$:

- $A_1 \rightarrow B_1$, $A_1 \rightarrow B_2$, $A_2 \rightarrow B_1$, $A_2 \rightarrow B_2$, $A_3 \rightarrow B_3$, $A_4 \rightarrow B_3$,
- $B_1 \rightarrow C_1$, $B_2 \rightarrow C_2$, $B_2 \rightarrow C_3$, $B_3 \rightarrow C_1$, $B_3 \rightarrow C_2$, $B_3 \rightarrow C_3$, $B_3 \rightarrow C_4$,
- $C_3 \rightarrow E$, $C_4 \rightarrow E$, and
- $D \rightarrow C_4$.

Answer the following questions.

- a) Which of the following properties are satisfied by \rightarrow ? Justify your answer.
 - i) finite iv) reflexive
 - ii) symmetric v) irreflexive
 - iii) antisymmetric vi) transitive
- b) Describe the following *closures*:

 $\stackrel{=}{\rightarrow}$, $\stackrel{+}{\rightarrow}$, $\stackrel{*}{\rightarrow}$, and \leftrightarrow .

Exercise 2

Let \rightarrow be the symbolic differentiation relation introduced in the lecture.

- a) Compute the *normal forms* of the following terms:
 - i) $D_X(((X * X) * X) + (X * X))$, and
 - ii) $D_X((X * Y) + (Y * Y))$.
- b) Prove that \rightarrow is *terminating*.

Exercise 3

In the lecture, a group was defined by the following identities:

- $(x \circ y) \circ z \approx x \circ (y \circ z) \tag{G1}$
 - $e \circ x \approx x$ (G2)
 - $i(x) \circ x \approx e$ (G3)

a) Prove that groups satisfy the property that *e* is a right unit, i.e.

$$x \circ e \approx x$$
 (G2')

by showing that $x \circ e$ can be transformed to x using the identities G1, G2 and G3.

b) Consider the following identity:

$$x \circ i(x) \approx e$$
 (G3')

Prove that G1, G2 and G3' do not imply G2'.

Hint:

Find a model of G1, G2 and G3' such that G2' does not hold in this model; such a model exists with only two elements.

Exercise 4

Consider the following identities:

$$(x \circ y) \circ z \approx x \circ (y \circ z) \tag{R1}$$

$$(x \circ y) \circ x \approx x \tag{R2}$$

Prove or refute whether the following identities are implied by R1 and R2.

a)
$$(x \circ x) \approx x$$

b) $(x \circ y) \circ z \approx x \circ z$