

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 4

Prof. Dr.-Ing. Franz Baader/Dr. rer. nat. Marcel Lippmann Summer Semester 2016

Exercise 15

The reduction relation \rightarrow enjoys the diamond property if

$$y_1 \leftarrow x \rightarrow y_2 \implies \exists z. y_1 \rightarrow z \leftarrow y_2.$$

Prove that, if \rightarrow enjoys the diamond property, then every element x is either in normal form or does not have a normal form.

Exercise 16

Let $(A, \to_1 \cup \to_2)$ be the reduction system obtained from the reduction systems (A, \to_1) and (A, \to_2) by building the union of the two reduction relations.

Prove or refute: If \rightarrow_1 and \rightarrow_2 are confluent, then so is $\rightarrow_1 \cup \rightarrow_2$.

Exercise 17

Does strong confluence imply the following property?

$$y_1 \leftarrow x \rightarrow y_2 \implies \exists z.y_1 \stackrel{=}{\rightarrow} z \stackrel{=}{\leftarrow} y_2$$

Give a proof or counterexample.

Exercise 18

Consider the terms s = f(x, g(h(k(k(y)), x), z), h(x, y)) and t = g(z, h(x, k(k(y)))).

Describe $t|_1$, $t|_{1111}$, $t|_{11111}$, $t[s]_2$, and $t[s]_2|_{21}$.

Exercise 19

Prove the second part of Lemma 3.4 by induction on the length of words denoting positions:

If
$$p \in Pos(s)$$
 and $q \in Pos(t)$, then

$$(s[t]_p)|_{pq} = t|_q$$

$$(s[t]_p)[r]_{pq} = s[t[r]_q]_p$$

Exercise 20

Prove Lemma 3.10:

 $\rightarrow_{\textit{E}}$ is closed under substitutions and compatible with Σ -contexts.

Exercise 21

Prove Proposition 3.16:

Let \mathcal{A} be a Σ -algebra and $\varphi \colon X \to A$ a mapping. Then there exists a unique homomorphism $\phi \colon \mathcal{T}(\Sigma, X) \to \mathcal{A}$ such that $\varphi(x) = \phi(x)$ for all $x \in X$.