

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 8

Prof. Dr.-Ing. Franz Baader/Dr. rer. nat. Marcel Lippmann Summer Semester 2016

Exercise 34

The following problem is known as *Hilbert's 10th problem*, and it has been proved to be undecidable.

Given: One polynomial $P \in \mathbb{Z}[X_1, ..., X_n]$.

Question: Are there $a_1, ..., a_n \in \mathbb{N}$ such that $P(a_1, ..., a_n) = 0$?

Show that the undecidability of Hilbert's 10th problem implies the undecidability of the following problem:

Given: Two polynomials $P, Q \in \mathbb{N}[X_1, ..., X_n]$ and a decidable set $A \subseteq \mathbb{N} \setminus \{0\}$. **Question:** Is $P >_A Q$? That is, is $P(a_1, ..., a_n) > Q(a_1, ..., a_n)$ for all $a_1, ..., a_n \in A$?

Exercise 35

Let $P \in \mathbb{Z}[X]$ be a polynomial with one indeterminate and coefficients in \mathbb{Z} .

- a) Prove for all $r \in \mathbb{Z}$: if P(r) = 0, then $r \mid a_0$, i.e. any root of P divides a_0 .
- b) Devise a decision procedure, which for each polynomial $P \in \mathbb{Z}[X]$ decides whether P has a root in \mathbb{Z} .
- c) Show that for polynomials with more than one indeterminate, the roots need not satisfy such a property.

Exercise 36

Consider the TRS $R = \{g(x, g(y, z)) \rightarrow g(g(x, y), z), g(g(x, y), z) \rightarrow g(y, y)\}$. Use a polynomial interpretation to prove that R terminates.

Exercise 37

A TRS R is called *right-irreducible* if each r with $\ell \to r \in R$ is irreducible. Prove or refute the following claim: If R is right-ground and right-irreducible, then R is terminating.

Exercise 38

Prove Lemma 5.20 of the lecture:

Let \mathcal{A} be a monotone polynomial interpretation of Σ . Then $f^{\mathcal{A}}$ is a monotone function for each $f \in \Sigma$.

Exercise 39

Let *R* be a finite TRS. We use $|t|_f$ to denote the number of occurrences of the symbol $f \in \Sigma$ in the term t. Prove the following claim:

There is a positive integer k_R such that $s \to_R t$ implies $|t|_f \le k_R(|s|_f + 1)$ for all terms s, t.

Exercise 40

Let R_{Ack} be the TRS with

$$R_{\text{Ack}} = \{ \textit{a}(0, \textit{y}) \rightarrow \textit{s}(\textit{y}), \, \textit{a}(\textit{s}(\textit{x}), 0) \rightarrow \textit{a}(\textit{x}, \textit{s}(0)), \, \textit{a}(\textit{s}(\textit{x}), \textit{s}(\textit{y})) \rightarrow \textit{a}(\textit{x}, \textit{a}(\textit{s}(\textit{x}), \textit{y})) \}.$$

Prove that there is no primitive recursive function that provides an upper bound for the length of reductions given the length of the first term. More precisely, prove that there is no primitive recursive function f such that $t_1 \to_{R_{Ack}} t_2 \to_{R_{Ack}} \cdots \to_{R_{Ack}} t_k$ implies $k \le f(|t_1|)$.

Hint

Use the previous exercise and the fact the the Ackermann function grows faster than any primitive recursive function.