

Term Rewriting Systems

Exercise Sheet 9

Prof. Dr.-Ing. Franz Baader/Dr. rer. nat. Marcel Lippmann Summer Semester 2016

Exercise 41

For each of the following pairs (s, t) of terms, check whether $s \ge_{emb} t$.

- a) $f(x) \trianglerighteq_{emb} a$
- b) $f(b) \trianglerighteq_{emb} a$
- c) $g(g(x, y), g(a, f(z))) \ge_{\text{emb}} g(y, g(a, z))$

Exercise 42

Prove the following claims:

a) The reduction relation $\stackrel{*}{\to}_{R_{\rm emb}}$ given by the TRS

$$R_{\text{emb}} := \{ f(x_1, ..., x_n) \to x_i \mid n \ge 1, f \in \Sigma^{(n)} \text{ and } 1 \le i \le n \}$$

and the homeomorphic embedding $\trianglerighteq_{\mathsf{emb}}$ are identical, i.e. $s \stackrel{*}{\to}_{R_{\mathsf{emb}}} t$ iff $s \trianglerighteq_{\mathsf{emb}} t$.

- b) \trianglerighteq_{emb} is a partial order.
- c) ⊵_{emb} is well-founded. (Prove this without using Kruskal's Theorem.)

Exercise 43

In the proof of Theorem 5.32, we have used that \trianglerighteq_{emb} is a well-partial-order. Explain why \trianglerighteq_{emb} being a well-founded partial order would not have been sufficient.

Exercise 44

In lecture, it was shown that the termination of the TRS $R := \{f(f(x)) \to f(g(f(x)))\}$ cannot be proved using a simplification order.

- a) Prove termination using the interpretation method.
- b) Is there a polynomial order that can be used to prove termination of R?

Exercise 45

Prove that polynomial orders are simplification orders if the following properties are satisfied.

- The underlying signature Σ contains only function symbols of arity at least 2.
- The domain A does not contain 1, i.e. $A \subseteq \mathbb{N} \setminus \{0, 1\}$.

Are those conditions necessary?

Exercise 46

Prove the first part of Theorem 5.38 of the lecture:

Let Σ be a finite signature, $s, t \in \mathcal{T}(\Sigma, V)$, and $>_{\text{lpo}}$ be a lexicographic path order. We can decide whether $s>_{\text{lpo}}t$ in time polynomial in |s| and |t|.

Hint:

First, show that the condition

 $s>_{\mathsf{lpo}} t_j$ for all j with $1\leq j\leq n$

in (LPO2c) can be replaced with

 $s>_{\text{lpo}}t_j$ for all j with $i\leq j\leq n$ for i such that $s_1=t_1\dots s_{i-1}=t_{i-1}$, and $s_i>_{\text{lpo}}t_i$.

Use this modified condition to prove that the question whether $s>_{\text{lpo}}t$ holds can be decided in time $O(|s|\cdot|t|)$.