

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 12

Prof. Dr.-Ing. Franz Baader/Dr. rer. nat. Marcel Lippmann Summer Semester 2016

Exercise 59

Consider the following sets of identities:

 $E_1 := \{f(g(f(x))) \approx x\}$ $E_2 := \{f(g(f(x))) \approx f(g(x))\}$

- a) Apply the basic completion procedure to E_1 and E_2 .
- b) What happens if the improved completion procedure that also simplifies rules is applied to E_1 ?

Exercise 60

Show that the encompassment quasi-order \supseteq is in fact a quasi-order and that the associated strict order \supseteq is a well-founded strict order.

Exercise 61

Let \equiv denote the equivalence relation associated to \supseteq , i.e. $s \equiv t$ iff $s \supseteq t$ and $t \supseteq s$. Show that:

- a) $s \equiv t$ iff s and t are equal up to variable renaming.
- b) For a given term *s*, there exist up to variable renaming only finitely many terms t_i such that $s \supseteq t_i$.

Exercise 62

Consider the following completion procedure for ground term rewriting systems:

- **Input:** G_0 , a finite set of ground identities over Σ , >, a reduction order that is total on the set of ground terms over Σ .
- **Procedure:** Apply the rules L-SIMPLIFY-RULE, DELETE, and ORIENT, until no more rule is applicable.

Output: A ground term rewriting system.

Show that this procedure

- a) always terminates,
- b) is fair,
- c) is correct, and
- d) never fails.