Term Rewriting Systems
Exercise Sheet 13
Prof. Dr.-Ing. Franz Baader / Dr. rer. nat. Marcel Lippmann
Summer Semester 2016

Exercise 63
a) Consider the following set of identities:
\[E := \{ f(f(x, y), z) \approx f(x, f(y, z)), \; f(x, x) \approx x, \; f(f(x, y), x) \approx x \} \]
Apply the rules of the improved completion procedure to \(E \). Use a strategy that resembles the basic completion procedure, but simplifies rules as follows: upon adding new rules, simplify old ones by means of L-SIMPLIFY-RULE and R-SIMPLIFY-RULE.
Consider the proof
\[P := (f(x, f(y, f(y, x))), \; f(x, f(f(y, y), x)), \; f(x, f(y, x)), \; f(f(x, y), x), \; x). \]
Construct a rewrite proof \(P' \) in \(\mathcal{R}_\omega \) with \(P \triangleright E P' \) using the proof of Lemma 7.21.

b) Consider the following set of identities:
\[E := \{ x + (y + z) \approx (x + y) + z, \; f(x) + f(y) \approx f(x + y) \} \]
Apply the completion procedure described above to input \(E \) and the polynomial order induced by
\[P_f(X) = X + 1, \; P_+(X, Y) = XY^2. \]

Exercise 64
The semi-decision procedure described in the proof of Theorem 7.22 of the lecture is rather inefficient: For the input \(s \approx_E t \), all \(R_i \)-normal forms of \(s \) and \(t \) are computed in the \(i \)th iteration of the repeat-loop. Show that the following modification of the procedure still yields a semi-decision procedure for the word problem:
- Begin with \(s_0 := s \) and \(t_0 := t \).
- After the \(i \)th repeat-loop, compute one arbitrary \(R_i \)-normal form \(s_i \) of \(s_{i-1} \) and one arbitrary \(R_i \)-normal form \(t_i \) of \(t_{i-1} \).
- Output ‘yes’ \((s \approx_E t) \) iff there exists an \(n \) such that \(s_n = t_n \).

Hint:
Since \(R \) is terminating, there exists a bound \(m \) such that \(s_i = t_i \) for all \(i \geq m \).