

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 2

Summer Semester 2017 26th April 2017

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 2.1 Let \otimes be a continuous t-norm. Prove the following two statements:

- (a) For every $x, y \in [0, 1]$ the set $\{z \in [0, 1] \mid x \otimes z \leq y\}$ has a maximum.
- (b) $x \Rightarrow y = \max\{z \in [0,1] \mid x \otimes z \le y\}$ satisfies

 $z \leq x \Rightarrow y$ iff $x \otimes z \leq y$.

Exercise 2.2 Show that the following three binary operators are continuous t-norms:

Łukasiewicz t-norm: $x \otimes y = \max\{x + y - 1, 0\}$,

Product t-norm: $x \otimes y = x \cdot y$,

Gödel t-norm: $x \otimes y = \min\{x, y\}$.

and that their residua are

Łukasiewicz:
$$x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ 1 - x + y & \text{otherwise} \end{cases}$$

Product: $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ \frac{y}{x} & \text{otherwise} \end{cases}$
Gödel: $x \Rightarrow y = \begin{cases} 1 & \text{if } x \leq y \\ y & \text{otherwise} \end{cases}$

Exercise 2.3 A partial order on the set of all t-norms can be defined naturally as follows. Let \otimes_1 and \otimes_2 denote two t-norms. We write

$$\otimes_1 \leq \otimes_2 :\Leftrightarrow \forall u, v \in [0,1] : u \otimes_1 v \leq u \otimes_2 v.$$

Find two t-norms \otimes_{min} and \otimes_{max} such that every t-norm \otimes satisfies $\otimes_{min} \leq \otimes \leq \otimes_{max}$.