

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 3

Summer Semester 2017 10th May 2017

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 3.1 Prove Lemma 2.5 from the lecture: if \otimes is the Łukasiewicz t-norm, then the following equivalences hold for every $x, y \in [0, 1]$

- (a) $\ominus \ominus x = x$,
- (b) $x \Rightarrow y = \ominus x \oplus y$,
- (c) $x \oplus y = \ominus (\ominus x \otimes \ominus y)$.

Exercise 3.2 Using ordinal sums, construct a continuous t-norm where exactly 3 values from [0, 1] are idempotent, i.e. exactly 3 values satisfy $x \otimes x = x$.

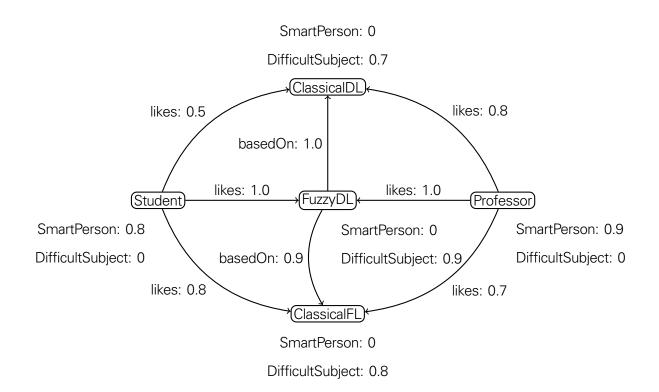
Exercise 3.3 Consider the fuzzy ABox

$$\mathcal{A} = \{ \langle A(a) \ge 0.5 \rangle, \langle r(a,b) \ge 0.9 \rangle, \langle r(a,c) \ge 0.7 \rangle \}$$

and the fuzzy TBox

$$\mathcal{T} = \{ \langle A \sqsubseteq \forall r. (A \sqcup \neg B) \ge 0.8 \rangle, \\ \langle A \sqsubset \exists r. \neg B > 0.9 \rangle$$

where the Gödel t-norm is used. Present a model of ${\cal A}$ and ${\cal T}$ that is not crisp.


Exercise 3.4 Consider a set of concept names

 $\mathcal{N}_{C} = \{ \mathsf{DifficultSubject}, \mathsf{SmartPerson} \}$

and a set of role names

 $\mathcal{N}_R = \{$ likes, basedOn $\}.$

Let a fuzzy interpretation be given by the following graphical representation (absent edges are meant to be read as 0, e.g. in this example likes^I (Student, Professor) = 0).

For the Gödel t-norm, give the interpretations of the following concept descriptions.

- (a) SmartPerson ⊓∃likes.DifficultSubject
- (b) \forall likes. \exists basedOn.DifficultSubject
- (c) ∃likes.∀basedOn.DifficultSubject