

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Fuzzy Description Logics

Exercise Sheet 4

Summer Semester 2017 31st May 2017

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkan Ceylan

Exercise 4.1 Prove or disprove. For any t-norm \otimes the following equivalences hold:

- $\neg (C \sqcup D) \equiv \neg C \sqcap \neg D$
- $\neg (C \sqcap D) \equiv \neg C \sqcup \neg D$

Exercise 4.2 Let *A* be a concept name. Construct a Lukasiewicz- \mathcal{ALC} ontology such that $A^{\mathcal{I}}(x) \in \{0.25, 0.75\}$ for every model \mathcal{I} and $x \in \Delta^{\mathcal{I}}$.

Exercise 4.3 For which of the three standard t-norms \otimes are the following \otimes -ALC ABoxes consistent?

- $\mathcal{A}_1 = \{ \langle A(a), 0.5 \rangle, \langle \neg (A \sqcap A), 1 \rangle \}$
- $\mathcal{A}_2 = \{ \langle \forall r.A(a), 1 \rangle, \langle \exists r. \neg A(a), 0.1 \rangle \}$

Exercise 4.4 Prove the missing cases of Lemma 3.4 from the lecture: For all complex concepts *C* and $x \in \Delta^{\mathcal{I}}$, $C^{\mathcal{J}}(x) = \mathbb{1}(C^{\mathcal{I}}(x))$.

Exercise 4.5 Does Lemma 3.5 from the lecture hold for assertions of the form $(C(a) \le q)$? Explain why.