Fuzzy Description Logics

Exercise Sheet 4

PD Dr.-Ing. habil. Anni-Yasmin Turhan & İsmail İlkkan Ceylan

Exercise 4.1 Prove or disprove. For any t-norm \(\otimes \) the following equivalences hold:

- \(\neg (C \sqcup D) \equiv \neg C \sqcap \neg D \)
- \(\neg (C \sqcap D) \equiv \neg C \sqcup \neg D \)

Exercise 4.2 Let \(A \) be a concept name. Construct a Lukasiewicz-\(\mathcal{ALC} \) ontology such that \(A^I(x) \in \{0.25, 0.75\} \) for every model \(I \) and \(x \in \Delta^I \).

Exercise 4.3 For which of the three standard t-norms \(\otimes \) are the following \(\otimes-\mathcal{ALC} \) ABoxes consistent?

- \(A_1 = \{ \langle A(a), 0.5 \rangle, \langle \neg (A \sqcap A), 1 \rangle \} \)
- \(A_2 = \{ \langle \forall r. A(a), 1 \rangle, \langle \exists r. \neg A(a), 0.1 \rangle \} \)

Exercise 4.4 Prove the missing cases of Lemma 3.4 from the lecture: For all complex concepts \(C \) and \(x \in \Delta^I, C^J(x) = 1(C^I(x)) \).

Exercise 4.5 Does Lemma 3.5 from the lecture hold for assertions of the form \(\langle C(a) \leq q \rangle \)? Explain why.