Prof. Dr. F. Baader

Hans-Grundig-Str. 25 Dresden Johannstadt Tel.: 0351/463-38237 Tel.: 0351/463-39171

13. Exercises for the Course "Logic-based Knowledge Representation"

Exercise 43:

Prove that the following K_n -formulas are theorems:

- (a) $[n]([m](p \lor q) \lor \neg [m](p \lor q))$
- (b) $[m](p \land q) \rightarrow [m]q$ and $[m](p \land q) \rightarrow [m]p$
- (c) $[m](p \wedge q) \rightarrow ([m]p \wedge [m]q)$

Exercise 44:

Let Δ and Γ be sets of K_n -formulas. Prove or refute the following claims:

- (a) if Γ is consistent and $\Delta \subseteq \Gamma$, then Δ is consistent
- (b) if Γ is inconsistent and $\Gamma \subseteq \Delta$, then Δ is inconsistent.
- (c) Let $\Gamma = \bigcup_{i>0} \Gamma_i$. Then Γ is consistent iff all Γ_i are consistent.
- (d) Let $\Gamma = \bigcup_{i>0} \Gamma_i$ and $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \cdots$. Then Γ is consistent iff all Γ_i are consistent.

Exercise 45:

Prove Lemma 7.16 from the lecture:

Lemma 7.16 Let R_m be a reachability relation.

- (a) If R_m is symmetric and transitiv, then R_m is euklidian.
- (b) The following three conditions are equivalent:
 - (i) R_m is symmetric, transitiv, and seriell.
 - (ii) R_m is reflexive and euklidian.
 - (iii) R_m is an equivalence relation, i.e., reflexiv, transitiv, and symmetric.

Exercise 46:

Show that the sets of theorems of K_n , $S4_n$, and $S5_n$ are recursively enumerable (in other words, partially decidable).