13. Exercises for the Course
„Logic-based Knowledge Representation“

Exercise 43:
Prove that the following K_n-formulas are theorems:
(a) $[n]([m](p \lor q) \lor \neg [m](p \lor q))$
(b) $[m](p \land q) \rightarrow [m]q$ and $[m](p \land q) \rightarrow [m]p$
(c) $[m](p \land q) \rightarrow ([m]p \land [m]q)$

Exercise 44:
Let Δ and Γ be sets of K_n-formulas. Prove or refute the following claims:
(a) if Γ is consistent and $\Delta \subseteq \Gamma$, then Δ is consistent.
(b) if Γ is inconsistent and $\Gamma \subseteq \Delta$, then Δ is inconsistent.
(c) Let $\Gamma = \bigcup_{i \geq 0} \Gamma_i$. Then Γ is consistent iff all Γ_i are consistent.
(d) Let $\Gamma = \bigcup_{i \geq 0} \Gamma_i$ and $\Gamma_0 \subseteq \Gamma_1 \subseteq \Gamma_2 \cdots$. Then Γ is consistent iff all Γ_i are consistent.

Exercise 45:
Prove Lemma 7.16 from the lecture:
Lemma 7.16 Let R_m be a reachability relation.
(a) If R_m is symmetric and transitiv, then R_m is euclidian.
(b) The following three conditions are equivalent:
 (i) R_m is symmetric, transitiv, and seriell.
 (ii) R_m is reflexiv and euclidian.
 (iii) R_m is an equivalence relation, i.e., reflexiv, transitiv, and symmetric.

Exercise 46:
Show that the sets of theorems of K_n, $S4_n$, and $S5_n$ are recursively enumerable (in other words, partially decidable).