Institut für Theoretische Informatik, TU Dresden Prof. Dr. F. Baader

Hans-Grundig-Str. 25 Dresden Johannstadt Tel.: 0351/463–38237 Tel.: 0351/463–39171

14. Exercises for the Course "Logic-based Knowledge Representation"

Exercise 47:

Let $\mathcal{K}^{\mathsf{T}_n}$ be the T_n -canonical Kripke structure and let Γ be the set of all formulas that are valid in all Kripke structures with reflexive accessibility relations.

Complete the proof of Theorem 7.18.1 by proving the following claim:

The fact that in $\mathcal{K}^{\mathsf{T}_n}$ all accessibility relations are reflexive implies that every formula $\varphi \in \Gamma$ is deducible in T_n . (You are asked to repeat the completeness argument from Theorem 7.11 for $\mathcal{K}^{\mathsf{T}_n}$ assuming without proof Lemma 7.13 and modifying Definition 7.12.)

Exercise 48:

A Kripke structure with set of worlds W and a single accessibility relation R_m is universal iff $R_m = W \times W$. Let Γ be the set of modal formulas valid in all universal Kripke structures.

Prove that $\Gamma = \{ \varphi \mid \vdash_{\mathsf{S5}_n} \varphi \}.$

Exercise 49:

Let K be a Kripke structure with accessibility relation R_m , φ a modal logic formula, and F the axiom schema

$$(\neg [m] \neg \varphi) \Rightarrow [m] \varphi.$$

Prove the following claims:

- (a) If R_m is a partial function, then F holds in \mathcal{K} , i.e., $\mathcal{K}, w \models (\neg [m] \neg \varphi) \Rightarrow [m] \varphi$ for all formulae φ and all worlds w in \mathcal{K} .
- (b) If a formula ψ holds in all Kripke structures whose accessibility relation R_m is a partial function, then ψ can be deduced in $K_n + F$.