Lehrstuhl für Automatentheorie

Institut für Theoretische Informatik, TU Dresden Prof. Dr. F. Baader

Hans-Grundig-Str. 25 Dresden Johannstadt Tel.: 0351/463–38237 Tel.: 0351/463–39171

2. Exercises for the Course "Logic-based Knowledge Representation"

Exercise 4:

Consider the problem of checking satisfiability of propositional logic formulas and the following algorithm: given a formula φ with propositional variables p_1, \ldots, p_k , enumerate all possible valuations for p_1, \ldots, p_k and for each one check whether it makes φ true. Return "yes" if such a valuation is found and "no" otherwise. Answer the following questions:

- Is this algorithm sound, complete, terminating?
- Is it a decision procedure? Is it a semi-decision procedure?
- If a formula is of length n, how many steps the algorithm will need to check its satisfiability?
- How much memory will it use?
- Is it an NP algorithm?
- How can you modify it to get a better complexity?

Exercise 5:

A propositional formula is in negation normal form (NNF) if it is built using \land , \lor , and \neg only, and if negation occurs only in front of propositional variables. Two propositional formulae α and β are equivalent if $\alpha \Leftrightarrow \beta$ is valid. Prove that each propositional formula α can be transformed into an equivalent one in NNF by first rewriting α into an equivalent formula α' that uses \land , \lor , and \neg only, and then by "pushing negation inwards", i.e., by applying the following three rules exhaustively to all sub-formulae of α' :

$$\neg(\beta_1 \lor \beta_2) \quad \leadsto \quad \beta$$

$$\neg(\beta_1 \lor \beta_2) \quad \leadsto \quad \neg\beta_1 \land \neg\beta_2$$

$$\neg(\beta_1 \land \beta_2) \quad \leadsto \quad \neg\beta_1 \lor \neg\beta_2$$

Exercise 6:

Consider the following semantic network:

- (a) Which nodes are concepts, which objects?
- (b) Describe some possible meanings of property edges.
- (c) Which color has Ralf's car?
- (d) What are the communalities between sports cars and operas?

Exercise 7:

Construct a semantic network that (partially) describes a university. Use concepts such as *professor*, assistant, student, and relationships such as teaches, is-employed-by, has-matrikelnumber, attends, and performs-exams. Fadditional concepts and relationships.