
Complexity Theory

Carsten Lutz

Winter semester 2006/2007

Contents

1 Introduction 1

2 Turing Machines 2
2.1 Deterministic Turing Machines . 2
2.2 Multiple Tapes . 5
2.3 Nondeterministic Turing Machines . 8
2.4 DTM vs. NTM . 9

3 Complexity Classes 10

4 Tractable versus Intractable 15
4.1 Examples . 15
4.2 The Speedup Theorem . 17
4.3 The Hierarchy Theorem . 19
4.4 Basics of NP . 21
4.5 SAT: A Natural NP-complete Problem 23

5 More NP-complete Problems 25
5.1 P vs. NP . 27
5.2 The Complement of NP . 29

6 The Polynomial Hierarchy 30

7 PSpace 33

1 Introduction

The subject of complexity theory is to study the computational properties of problems,
most notably how hard it is to compute a solution to (an instance of) a problem.
Hardness is measured in terms of the resources (mainly time and memory) that are
required by algorithms that solve the problem.

To see what a problem is, let us consider three examples.

• Graph reachability. A directed graph G = (V,E) consists of a set of nodes V and
a set of edges E ⊆ V × V . The graph reachability problem is to decide, given a
graph G and two nodes v, v′ ∈ V , whether v′ is reachable from v by travelling
along the edges E.

• Propositional satisfiability. Given a formula ϕ of propositional logic, decide
whether there is a truth assignment that makes the formula true.

• Universality of regular expressions. Given a regular expression π defining a
language L(π) over alphabet Σ, is L(π) = Σ∗?

We will see later that the computational hardness of these problems is quite different.
As illustrated by the second problem, complexity theory is a very important subject
for computational logic.

To set the stage for this lecture, let us discuss some fundamental issues concerning
problems, algorithms, and their complexity:

Complexity of problem vs. complexity of algorithm. Usually, there are many differ-
ent algorithms for solving the same problem. Some of them may be efficient w.r.t. a
given resource, some not. Consider for example graph reachability and the following
algorithm:

Generate all possible sequences v0, . . . , vn of nodes of length at most |V |
(the number of nodes). For each sequence, check whether it starts with v,
ends with v′, and is such that (vi, vi+1) ∈ E for all i < n.

Regarding temporal resources, this algorithm needs Σi=1..|V |(|V |i · i) steps to compute
a solution. For a graph with only 100 nodes, these are more than 10200 steps. Compare
this to the number of atoms that are believed to exist in the universe: ≈1079. We will
later see that there are much faster algorithms for graph reachability.

Complexity theory is not about the complexity of concrete algorithms, since they
may be wasteful with resources like the algorithm above. It is about the complexity
of problems, i.e., we are interested in the best possible algorithm for a given problem.

Number of instances. We will only consider problems that have an infinite num-
ber of instances. Indeed, problems with only a finite number of instances are not
interesting for complexity theory because they always admit an algorithm that simply
perform a lookup in a table storing the answers for all instances. It may be difficult
to generate the table, but still there always exists such a (completely uninteresting)
algorithm.

1

Undecidability. There are undecidable problems that cannot be solved by any
algorithm. Although such problems do play a role in computational logic, in this
lecture we will only be concerned with decidable problems.

Decision problems vs. function problems. Every problem in the above list has
only “yes” and “no” as a possible answer. Such problems are called decision problems,
other problems are called function problems. The following is an example of a function
problem:

• Minimal assignment. Given a formula ϕ of propositional logic, return a truth
assignment that satisfies ϕ and makes only a minimal number of variables true.

Usually, function problems can be converted into a roughly equivalent decision problem
by providing a target value. In the case of problem above, we add a non-negative
integer k as an additional input and ask whether there is a truth assignment that
satisfies ϕ and makes at most k variables true. Observe that an algorithm for the
function problem can easily be converted into an algorithm for the decision problem.

There is a branch of complexity theory which treats function problems as first
class citizens. In this lecture, we will only consider decision problems.

2 Turing Machines

In complexity theory, problems are usually formalized as formal languages and algo-
rithms are Turing machines. By the Church-Turing Thesis, the problems computable
by a Turing machine are precisely those problems that are computable in the intu-
itive sense. Though such a claim cannot be fornally proved, Turing machines have
indeed turned out to be equivalent to many other models of computation used in
theory (such as Church’s λ-calculus and register machines) and in practice (such as
most programming languages). The advantage of Turing machines is that they are
extremely simple. In the words of Papadimitriou, it is amazing how little we need to
have everything.

Still, Turing machines are merely a technical tool that could be replaced by a
different tool without essentially changing the obtained results. What we study is
not Turing machines, but the nature of efficient computation (which is much more
fundamental).

2.1 Deterministic Turing Machines

A Turing machine (TM) is a machine that has a finite control and an infinite tape
to work on. For this lecture, we assume that the tape is bounded to the left and
unbounded to the right.

Definition 1. A (deterministic) Turing machine is a tupleM = (Q,Σ,Γ, δ, q0, qacc, qrej),
where

• Q is a finite set of states such that {q0, qacc, qrej} ⊆ Q;

2

• Σ is the finite input alphabet such that t /∈ Σ;

• Γ is the finite tape alphabet such that Σ ∪ {t} ⊆ Γ;

• q0 ∈ Q is the initial state;

• qacc ∈ Q is the accepting state;

• qrej ∈ Q is the rejecting state;

• δ : (Q \ {qacc, qrej}) × Γ → Q× Γ × {L,R} is the (total) transition function.
4

The input to a TM is written left-boundedly on the tape and the TM starts in an
initial state with the head on the left-most tape cell. The remainder of the tape is
filled with the blank symbol t. Then, δ(q, a) = (q′, b, L/R) means that when M is in
state q and a is the symbol underneath the head, then M replaces a with b, moves
the head left/right, and switches to state q′. If the head is on the left-most cell and
the TM needs to execute δ(q, a) = (q′, b, L), then the symbol a is replaced with b,
the state is switched to q′, the TM stays on the left-most cell, and the computation
continues normally.

The overall current state of a TM can be described by a configuration, which is
a word uqv with u, v ∈ Γ∗ and q ∈ Q. The configuration uqv means that the tape
content is uv followed by infinitely many t symbols, the TM is in state q, and the
head is on the left-most symbol of v.

aa abba tt · · ·

finite control

head

A configuration uqv is accepting if q = qacc and rejecting if q = qrej. For every
configuration c that is neither accepting nor rejecting, the transition function defines
a unique successor configuration c′, written c `M c′:

• if δ(q, a) = (q′, b, L), then for all u, v ∈ Γ∗,

– ua′qav `M uq′a′bv

– qav `M q′bv (special case left-most tape cell);

• if δ(q, a) = (q′, b, R), then for all u, v ∈ Γ∗,

– uqav `M ubq′v

– uq `M ubq′ if a = t.

A finite or infinite sequence c0 `M c1 `M · · · is called a computation of M . The
computation is on w if c0 = q0w and it is accepting if it is finite and its last configu-
ration is accepting. A TM accepts an input w ∈ Σ∗ if its unique computation on w is
accepting.

3

As an example, we define a TM which works over the singleton input alphabet
Σ = {1}, stops on every input, and accepts input w if the length of w is a power of
two. Intuitively, the TM does the following:

• sweep right over the whole input, replacing every second 1 with x;

• accept if only a single 1 was found;

• reject if this is not the case and the number of 1’s found is odd (i.e., the last 1
seen was skipped rather than replaced with x);

• otherwise, move head back to the left end of tape;

• repeat sweeping process as long as possible, replacing every second 1 and ignoring
the existing x.

More precisely, M := (Q,Σ,Γ, δ, q0, qacc, qrej), where

• Q = {q0, q1, q2, q3, q4, qacc, qrej};

• Σ = {1};

• Γ = {1, x,t};

• δ is described in terms of the following state diagram:

q0

qrej qacc

q1 q2

q3

q4

1 → x/R1 → t/R

x → x/R t → t/R t → t/L

x → x/L
1 → 1/L

x → x/R
t → t/R

1 → x/R

x → x/Rt → t/R

1 → 1/R

x → x/R

t → t/R

Observe that δ is total and a function, i.e., in the state diagram we need exactly one
edge for every state and every element of Γ.

4

Here is a sample computation of M on input 1111:

q01111 tq4x1xt txq4xxt
tq1111 q4tx1xt tq4xxxt
txq211 tq1x1xt q4txxxt
tx1q31 txq11xt tq1xxxt
tx1xq2t txxq2xt txq1xxt
tx1q4xt txxxq2t txxq1xt
txq41xt txxq4xt txxxq1t

txxxtqacc

Intuitively, this TM solves the decision problem asking whether a number given in
unary is a power of two. It stops on every input and thus partitions the set Σ∗ into
two parts: those numbers that are a power of two (the “yes” instances of the problem)
and those that are not (the “no” instances of the problem).

This example suggests to view a problem as a formal language, i.e., as a (usually
infinite) set of finite words over some alphabet Σ. Formally, we define the language
accepted by a TM M as

L(M) := {w ∈ Σ∗ |M accepts w}.

In the following, we use the word “problem” as a synonym for a formal language.

Observe that there are two possible reasons for a word not to be in L(M): M
may stop in the rejecting state or it may not stop at all. Obviously, only TMs that
stop on every input actually solve a decision problem and such TMs best correspond
to our intuition of a (terminating) algorithm. Formally, we say that a TM decides a
language L if L(M) = L and L stops on every input.

Is a TM a realistic model of computation? With its infinite tape and basic in-
struction set, a TM may seem very different from a modern computer. On the other
hand,

1. it is not difficult to see that more sophisticated instructions can be formulated
in terms of the basic ones; e.g., if the word on the string is a binary encoding of a
natural number, incrementation, addition, and other arithmetic operations are
easily carried out by a TM; the number of basic instructions needed to carry out
such operations are not fundamentally different from the number of instructions
needed by a real computer;

2. when programming a computer, we think of it as having infinite memory, which
is justified by mechanisms such as paging, swapping, etc.

In this sense, a TM is quite realistic if we assume a classical model of computation.

2.2 Multiple Tapes

When we define complexity classes, we will also allow TMs that have more than a
single tape. There is one head for every tape and the positions of different heads need
not agree:

5

finite control

aa abba tt · · ·

ab aaaa tt · · ·

bb abbb tt · · ·

A k-tape TM is a TM with k tapes. To describe k-tape TMs formally, we use a
transition function of the form

δ : (Q \ {qacc, qrej}) × Γk → Q× Γk × {L,R}k.

Intuitively,

δ(q, a1, . . . , ak) = (q′, b1, . . . , bk,M1, . . . ,Mk)

means that if the TM is in state q and reads ai on the i-th tape for all i with 1 ≤ i ≤ k,
then it switches to q′, writes bi onto the i-th tape and moves its i-th head according
to Mi, for all i with 1 ≤ i ≤ k.

Unless stated otherwise, assume that the input to a k-tape TM is on the first
tape, and that all other tapes are filled with blanks. However, sometimes it is more
appropriate to consider k-tape TMs that have an additional input tape (thus k + 1
tapes in total) which contains the input and cannot be modified (i.e., the new symbol
written there is always identical to the old symbol).

We will now see that the computational power of multi-tape TMs is the same
as that of single-tape TMs. This illustrates the robustness of TMs as a model of
computation.

To state the result precisely, we introduce measures for the time and space con-
sumption of TMs. For a TM M , we use

• timeM (w) to denote the length of the computation of M on input w;

• spaceM (w) to denote the maximum number of cells used by M on any tape when
started on input w; if the Turing machine is equipped with an input tape, the
cells consumed on this tape are not counted.

Note that both timeM (w) and spaceM (w) can be ∞. The reason for not counting the
space on the input tape is that there are interesting cases where a TM needs less space
than occupied by the input, see Exercise 2.

Let T, S :
�

→
�

be functions. Then a TM M is called

• T -time bounded if timeM (w) ≤ T (|w|) for all w ∈ Σ∗;

• S-space bounded if spaceM (w) ≤ S(|w|) for all w ∈ Σ∗,

6

where |w| denotes the length of w. Note that if a TM is T -time bounded for any T ,
then it stops on every input. Note that S(n) ≥ n unless there is an extra input tape.
Also note that time bounds T with T < T (n) do not make much sense because within
such time bound not even the input can be read. We always assume that time bounds
T satisfy T (n) ≥ n for all n ∈

�
.

Theorem 2. Given a T -time bounded and S-space bounded k-tape TM M , we can
construct a 2T 2-time bounded and S-space bounded (1-tape) TM M ′ such that L(M) =
L(M ′).

Proof. (sketch). Let M = (Q,Σ,Γ,∆, q0, qacc, qrej). Central ideas for representing k
tapes in a single one:

• use alphabet Γk, i.e., tuples (a1, . . . , ak) with ai ∈ Γ for 1 ≤ i ≤ k;

• the difference between a 1-tape TM M operating on Γk and a k-tape TM M ′

operating on Γ is that M ′ can move its heads independently. To simulate this,
we use the alphabet Γ̂ := (Γ ∪ {a∗ | a ∈ Γ})k:

a

a∗ · · ·

abbab∗bba

aabaaaa

baabba∗b

• since M ′ should have input alphabet Σ, M ′ uses alphabet Σ ∪ Γ̂.

The TM M ′ simulates the computation of M :

1. M ′ first replaces every input symbol a ∈ Σ with (a,t, . . . ,t);

2. for each step of M , M ′ traverses the tape left-to-right and collects all symbols
under the heads; then M ′ determines the move of M and traverses back right-
to-left, making all necessary changes;

3. M ′ accepts/rejects whenever the simulated M reaches the accepting/rejecting
state.

Step 1 can be done during the first traversal. We have:

• M ′ is 2T 2-time bounded: for every step of M , M ′ needs to traverse the tape
twice. The maximum length of the tape is T (n) since a TM can write at most
a single symbol in every step. Therefore, simulating a single step of M requires
2T (n) steps of M ′.

• M ′ is S-space bounded: obviously, M ′ does not use more space than M .

o

7

In complexity theory, we usually abstract from concrete constants such as the factor
two in Theorem 2. It is thus convenient to use Landau notation, in particular “big O”:
for f, g functions from

�
to

�
, we write

• f(n) ∈ O(g(n)) if ∃c ∈
� + : ∃n0 ∈

�
: ∀n > n0 : f(n) ≤ c · g(n)

which intuitively means that f grows as g or slower. An alternative definition is
f(n) ∈ O(g(n)) if lim f(n)

g(n) ≤ c. Sometimes, it will be necessary to say that a function
f grows strictly slower than a function g. We use “small o”:

• f(n) ∈ o(g(n)) if ∀c ∈
� + : ∃n0 ∈

�
: ∀n > n0 : c · f(n) ≤ g(n)

The alternative definition is f(n) ∈ o(g(n)) if lim f(n)
g(n) = 0. Some examples are given

in Exercise 4.

2.3 Nondeterministic Turing Machines

A (single-tape) non-deterministic TM (NTM) is much like a deterministic one (DTM).
The main difference is that the machine is not restricted to having a single, uniquely
defined next action. Instead, it has the choice between several actions. To formalize
this, we use a transition function

δ : (Q \ {qacc, qrej}) × Γ → 2Q×Γ×{L,R}

Thus, for each state-symbol combination (q, a), there is a set δ(q, a) of possible next
steps. Equivalently to this generalized transition function, we will use a transition
relation

∆ ⊆ (Q \ {qacc, qrej}) × Γ ×Q× Γ × {L,R}.

The `M and `∗ relations are defined in an analogous way as for DTMs, only that `M

is no longer a total function, i.e., for a configuration c, there can be more (and less)
than one configuration c′ such that c `M c′.

On a single input w, an NTM may thus have many different computations. Some
of them may be accepting, some rejecting, and some may not terminate. We say
that an NTM M accepts an input w iff there exists an accepting computation of M
on w. Note the asymmetry: it follows that if an input w is not accepted, then all
computations starting on w are rejecting or infinite.

The language L(M) accepted by an NTM M is defined as for DTMs. We say that
an NTM M stops on input w if all computations of M on w are finite. We say that
M decides a language L if L(M) = L and M stops on all inputs.

The functions timeM (w) and spaceM (w) are defined as for DTMs, but referring to
the maxium length/space consumption of all computations of M when started on w.
Finally, being T -time bounded and S-space bounded is defined exactly as for DTMs.

Note that the set δ(q, a) can also be empty, which means that the TM cannot
make any further steps when being in a configuration c = uqav; we call c a blocking

8

configuration and say that the TM blocks if it reaches such a configuration. Intuitively,
a blocking configuration uqav with q 6= qacc is very similar to a rejecting configuration.

Although NTMs are a considerably less realistic model of computation than DTMs,
they play a very important role in complexity theory because they capture in a very
natural way a large group of problems occurring in computer science.

2.4 DTM vs. NTM

We want to show that DTMs and NTMs decide the same classes of languages. One
direction is trivial: every DTM is also an NTM. For the other direction, it is common
to arrange all the computations of an NTM on a given input w in a tree:

q0w

c1 c2

c3 c4 c5

c6

· · ·

This view suggests a way to convert an NTM into a DTM that accepts the same
language (using breadth-first search).

Theorem 3. For every T -time bounded and S-space bounded NTM M , there is a
2O(T (n))-time bounded and O(T)-space bounded DTM M ′ such that L(M) = L(M ′).

Proof. (sketch) Let M = (Q,Σ,Γ,∆, q0, qacc, qrej). Define a set of choices and a
corresponding alphabet

C := {(q, a,M) | ∃q′, a′ : (q′, a′, q, a,M) ∈ ∆}

Σch := {aq,b,M | (q, b,M) ∈ C}.

Set d := |C|. The DTM M ′ simulates M using three tapes. Basic idea:

• the first tape of M ′ contains the input and is not modified;

• every computation of M can be viewed as a finite sequence of choices, with each
choice determining the next configuration (but there are sequences of choices
that do not describe a computation);

9

• M ′ successively generates all sequences of symbols from Σch on the second tape
in order of increasing length;

• for each generated sequence, M ′ simulates the computation of M corresponding
to the sequence on the third tape (if it exists), keeping at most one configuration
of M at a time on the tape;

• M ′ accepts if it encounters the accepting configuration of M during simulation;

• M ′ rejects if it encounters a t ∈
�

such that there is no computation of length t.

The number of nodes in the computation tree is bounded by dT (n)+1 − 1 and it can
be seen that each computation can be simulated using at most c ·T (n) steps for some
constant c. Now, (dT (n)+1 − 1) · c · T (n) ∈ 2O(T (n)) (Exercise). Since all computations
of M are of length at most T (n), the number of cells used on tapes 2 and 3 is bounded
by O(T (n)). o

Note that the above construction works without knowledge of T (M), and thus it
actually provides an algorithm for converting a given NTM into a DTM.

3 Complexity Classes

A complexity class is determined by a machine model (such as DTM or NTM) and
resource bounds for that machine model, with typical resources being time and space.
Then, the associated complexity class is the class of problems (i.e., formal languages)
that can be decided by a machine of the given model within the given bounds.

Definition 4. Let T and S be functions from
�

to
�

. Then

• DTimek(T) is the class of all languages L that are decided by a T -time bounded
k-tape DTM;

• DTime(T) :=
⋃

k≥1

DTimek(T);

• DSpacek(S) is the class of all languages L that are decided by a S-space bounded
k-tape DTM;

• DSpace(S) :=
⋃

k≥1

DSpacek(S);

• NTimek(T), NTime(T), NSpacek(S), and NSpace(S) are defined analogously
based on NTMs.

4

Note that what we are defining here are classes of worst case complexity: by definition
of T -time boundedness, we require that T (n) is an upper bound for the time consump-
tion on all words of length n which may include cases that are fairly complex and
“untypical” for the problem (and similarly for space boundedness). An alternative is

10

to study average case complexity, but this requires a mathematical characterization
of what an average case actually is, and this is often difficult to attain.

Some frequently used complexity classes have special names, most importantly the
following:

• P :=
⋃

d∈ �
DTime(nd) and NP :=

⋃
d∈ �

NTime(nd);

• PSpace :=
⋃

d∈ �
DSpace(nd) and NPSpace :=

⋃
d∈ �

NSpace(nd);

• ExpTime :=
⋃

d∈ �
DTime(2nd

) and NExpTime :=
⋃

d∈ �
NTime(2nd

);

• ExpSpace :=
⋃

d∈ �
DSpace(2nd

) and NExpSpace :=
⋃

d∈ �
NSpace(2nd

);

• LogSpace :=
⋃

d∈ �
DSpace(d · log n) and NLogSpace :=

⋃
d∈ �

NSpace(d · log n).

In the definition of LogSpace and NLogSpace, we assume TMs to be equipped with
an additional input tape. Observe that a LogTime complexity class does not make
much sense because then T (n) < n.

The main aim of studying complexity theory is to understand how complexity
classes are interrelated. The main aim of applying complexity theory is to determine
the position that a given problem has in the landscape of complexity classes.

Here are some basic observations regarding the relationship between time and
space complexity classes.

Lemma 5.

1. DTime(T) ⊆ DSpace(T) and NTime(T) ⊆ NSpace(T);

2. DSpace(S) ⊆ DTime(2O(S)) and NSpace(S) ⊆ NTime(2O(S));

Proof. Let M be a k-tape NTM (in particular, M could also be a DTM).

1. If M is T -time bounded, then it is also T -space bounded because M can only
use a single tape cell (on each tape) in every step that it makes.

2. Follows from the following:

• the number of configurations of M on an input of length n is bounded by
the following number, where m = S(n):

|Q| ·mk · |Γ|k·m ≤ 2O(m)

• in every computation on some input w, each configuration appears at most
once since otherwise M has at least one infinite computation on w.

o

11

Regarding the relationship of deterministic and non-deterministic complexity classes,
we trivially have the following.

Lemma 6. DTime(T) ⊆ NTime(T) and DSpace(S) ⊆ NSpace(S).

We can easily derive the following inclusions:

LogSpace ⊆(2) P ⊆(1) PSpace ⊆(2) ExpTime ⊆(1) ExpSpace

|∩(6) |∩(6) |∩(6) |∩(6) |∩(6)

NLogSpace ⊆(2) NP ⊆(1) NPSpace ⊆(2) NExpTime ⊆(1) NExpSpace

There is another easy connection between complexity classes. To state it, we restrict
ourselves to “well-behaved” time and space bounds.

Definition 7. A function T :
�

→
�

is time constructible if there is a DTM M with
timeM (w) = T (|w|) for all w. Analogously, S :

�
→

�
is space constructible if there

is a DTM M with spaceM (w) = S(|w|) for all w. 4

Standard functions such as nd, 2n, and n! are time and space constructible. Also,
these function classes are closed under operations such as f + g, f · g, 2f , and fg.

Lemma 8. Let S be a space constructible function. Then NSpace(S) ⊆ DTime(2O(S)).

To prove Lemma 8, we need some preliminaries.

Definition 9. Let M be a (1-tape) NTM and s ∈
�

. Then ConfM (s) is the set of
all configurations of M in which at most s tape cells are labelled with a non-blank
symbol. The s-configuration graph for M is the directed graph GM (s) = (V,E), where

• V = ConfM (s);

• E = {(c, c′) | c `M c′}.

4

There is an obvious relation between configuration graphs and configuration trees as
used in Section 2.4. Let M be an S-space bounded NTM, w an input of length n, and
GM (S(w)) = (V,E). Then the configuration tree for M on w is obtained by using the
initial configuration q0w ∈ V as the root, and “unravelling” GM (S(n)). For example,
unravelling

q0w c

yields

12

q0w

cq0w

q0w c

· · · · · · · · ·

q0w

The following is obvious.

Lemma 10. Let M be an S-space bounded NTM and w ∈ Σ∗ of length n. Then
w ∈ L(M) if in GM (S(n)), an accepting computation is reachable from q0w.

We are now ready to prove Lemma 8.

Proof. If L ∈ NSpace(S), then by Theorem 2 there is an S-space bounded 1-tape
NTM M with L(M) = L. We construct a DTM M ′ that does the following on input
w of length n:

• determine S(n) by running the TM MS witnessing space constructability of S
on a separate tape. The number of tape cells used encodes S(n) in unary.

• construct the graph GM (S(n)), i.e.

– generate all configurations: words from (Q∪Γ)∗ of length at most S(n)+1
with exactly one symbol from Q;

– for each pair of configurations c and c′, compute whether c ` c′.

• for every generated accepting configuration c, check whether there is a path from
the initial configuration to c.

MS runs in time at most 2O(n) (see proof of Lemma 5); there are at most 2O(n)

configurations in GM (S(n)), and thus (i) GM (S(n)) is generated in time at most
2O(n) and (ii) at most 2O(n) reachability problems need to be solved. A single such
problem can be solved in polynomial time (as we will see later). o

Observe that the construction is not effective since we need to know MS .

This construction also works when we consider S-space bounded TMs equipped
with an extra input tape and S(n) ≥ log(n) (without an extra input tape, S(n) ≥ n
by definition). Then, the input tape content is not part of the configuration, but the
head position on the input tape is. There are at most n = 2log n such positions. Thus
we get:

Corollary 11. NLogSpace ⊆ P and NPSpace ⊆ ExpTime.

13

The updated picture is as follows:

LogSpace ⊆ NLogSpace ⊆ P ⊆ NP

PSpace
⊆ NPSpace ⊆ ExpTime ⊆ NExpTime

ExpSpace
⊆

NExpSpace.

It remains to clean up the messy parts. To prove the following theorem, we again view
acceptance of Turing machines as reachability in the configuration graph, but exploit
this in a much smarter way.

Theorem 12 (Savitch). If S is space constructible, then NSpace(S) ⊆ DSpace(S2).

Proof. Let M be an S-space bounded NTM. We convert M into a 3-tape DTM M ′

as follows. Let w be an input to M ′ of length n. Clearly, M ′ cannot generate the
whole graph GM (S(n)) = (V,E) since it has 2O(S(n)) nodes. Main ideas:

• let Path(c, c′, i) be true if there is a path of length at most 2i from c to c′ in
GM (S(n)). Also, let N = |V |. Clearly, M accepts w iff Path(q0w, cacc, logN) is
true for some accepting configuration cacc;

• any path of length at most 2i from c to c′ has a midpoint m, and the subpaths
from c to m and from m to c′ are of length at most 2i−1;

• use divide and conquer: to decide Path(c, c′, i), consider all configurations m as
potential midpoints and recursively check Path(c,m, i−1) and Path(m, c′, i−1).

On tape 1, M ′ first generates S(n) and then uses it to compute N (in binary). Then,
on Tape 2 we successively generate all accepting configurations cacc in GM (S(n)),
keeping only one at a time on the tape. For each cacc, it runs the following algorithm
accepting if the algorithm succeeds on at least one cacc:

1. first write the triple (q0w, cacc, logN) on tape 3;

2. if the right-most triple on tape 3 is (c, c′, 0), then return a positive answer if
c = c′ or c `M c′;

3. consider the right-most triple (c, c′, i) on tape 3, generate first midpoint candi-
date m, append triple (c,m, i− 1) to tape 3, recursively start with 2.;

4. if the answer was negative, erase triple (c,m, i−1) and try nextm; if it is positive,
erase (c,m, i − 1), write (m, c′, i − 1) (by recovering c′ from the adjacent triple
to the left) and recursively start with 2.;

5. if the answer is negative, erase (m, c′, i − 1) and try next m; if it is positive,
answer positively.

On Tapes 1 and 2, we need at most O(S(n)) cells. Tape 3 is used like a stack in
recursive procedure calls. It contains at most logN ∈ O(S(n)) triples since we start
with i = logN . Each triple is of length at most O(S(n)), thus O(S(n)2) tape cells
are consumed. o

14

Corollary 13. PSpace = NPSpace and ExpSpace = NExpSpace.

Observe that Savitch’s Theorem does not apply to LogSpace and NLogSpace be-
cause of the quadratic blowup. However, it is the consequence of a theorem by Im-
merman and Szelepcsényi, that LogSpace = NLogSpace.

We finally obtain the following picture, in which NLogSpace, NPSpace, and
NExpSpace do not occur anymore:

LogSpace ⊆ P ⊆ NP ⊆ PSpace ⊆ ExpTime ⊆ NExpTime ⊆ ExpSpace.

An important question is which of these inclusions is strict. One of the major frustra-
tions (and fascinations!) of complexity theory is that regarding this question, there
are much more open problems than settled ones.

For example, note that we have not proved a version of Savitch’s theorem for
time complexity classes. Such a theorem would e.g. imply P = NP. It is not known
whether this equality holds. Discussing this issue is the subject of the next section.

4 Tractable versus Intractable

The most important distinction in computational complexity is between problems that
can be solved “efficiently” and those that cannot. Problems of the former kind are
commonly called tractable. Let us consider two example of problems on graphs: one
of them tractable and the other not.

4.1 Examples

Recall: the graph reachability problem is to decide, given a graph G = (V,E) and two
nodes v, v′ ∈ V , whether there are nodes v0, . . . , vn (n ≥ 0) such that v = v0, v

′ = vn,
and (vi, vi+1) ∈ E for all i < n. We write this as

REACH := {(G, v, v′) | G = (V,E) is such that v′ is reachable from v}

because we view a problem as a formal language (which is a set). We neglect encoding
issues in this presentation.

Consider the following algorithm, given in pseudocode (for a TM implementation,
we need a suitable encoding of graphs as words):

S := {v}
mark v
while S 6= ∅ do

choose u ∈ S
S := S \ {u}
for each edge (u, u′) ∈ E do

if u′ is not marked then
mark u′

S := S ∪ {u′}

15

endif
endfor

endwhile
if v′ is marked then answer “yes”, else answer “no”.

This algorithm is correct and terminates after at most O(n2) steps, where n is the
number of nodes:

• each node appears at most once in S, and thus the while loop makes at most n
steps;

• since each node directly reaches at most n nodes, the for loop is executed at
most n times in each iteration of the while loop.

(Actually, it can be seen to terminate after O(n + m) steps where m is the number
of edges). A runtime behaviour of O(n2) can be considered relatively efficient. E.g.,
on an input of size n = 1000, the algorithm needs 10002 ≤ 220 steps. Compare this to
the ≈ 230 (= 1024 · 220) steps per second made by a 1Ghz computer.

An undirected graph is a pair G = (V,E) with V a set of nodes and E a set of sets
{u, v} ⊆ V of cardinality two. A k-clique in G is a set C ⊆ V of cardinality k such
that {u, v} ∈ E for all u, v ∈ C with u 6= v. The clique problem is

CLIQUE := {(G, k) | G is an undirected graph with a k-clique}

It is not important whether k is coded in unary or binary since we may assume that
k is at most |V |.

The following algorithm for CLIQUE springs to mind:

for all S ⊆ V of size k
f := 1
for all u, v ∈ S with u 6= v

if (u, v) /∈ E then f := 0
endfor
if f = 1 then return “yes”

endfor
return “no”

This algorithm is much less efficient:

• the for loop makes
(
n
k

)
steps;

• the inner loop makes k2 steps.

Take e.g. k = n/2. Then
(
n
k

)
≥ 2n, i.e., the algorithm has exponential runtime

behaviour. If n = 1000 and k = 500, the algorithm thus needs more than 21000 steps.
A 1Ghz computer will thus need 2970 seconds (a number with 276 digits). A natural

16

question is whether all algorithms deciding CLIQUE have to be that hard. After all,
there could be a more clever algorithm that runs in polynomial time.

These two examples suggest that a problem is tractable if it can be solved by a
DTM with polynomial time consumption. Indeed, this is the classical view of com-
plexity theory: a problem is tractable if it is in P. Note:

• Runtimes such as n1000 are polynomial, but probably not tractable; 2
n

1000 is
exponential, but probably tractable. In practice, such extreme rates of growth
rarely appear.

• The tractable/non-tractable distinction is only a rule of thumb and there are
exceptions. For example, in linear programming the polynomial ellipsoid al-
gorithm is unusable whereas the worst-case exponential simplex method has a
superb perfomance in practice.

4.2 The Speedup Theorem

To understand tractability, we start with the fundamental question whether allowing
more resources actually allows us to solve more problems. We first show that adding
multiplicative constants does usually not allow us to solve additional problems, i.e., it
is possible to speed up most DTMs by any constant factor.

Theorem 14 (Speedup Theorem). Let T :
�

→
�

be such that n ∈ o(T). Then
L ∈ DTime(T) implies L ∈ DTime(max{n, dε · T e}) for all ε ∈ (0, 1].

Proof. Let M be a k-tape DTM deciding L in time T (n). We construct a k+ 1-tape
TM M ′ that works over alphabet Σ∪Σm for some m that we fix later. Thus, M ′ can
represent m > 1 symbols of M in a single symbol. E.g. if m = 3:

ec · · ·a gb d f h

a
b
c

d
e
f

g
h
i

· · ·

This saves space, but also allows to execute multiple steps in one. M ′ works as follows:

• M ′ copies the input of M onto the new tape, compressing m symbols of Σ into
one of Σm; this and bringing back the head on the new tape needs n+d n

m
e steps;

• M ′ simulates m steps of M using eight steps. To do this, the following steps are
perfomed simultaneously on each tape:

17

– M ′ saves “in its state set” the content of the neighboring cells of the current
cell. This is possible since it is only a constant amount (2m symbols) of
information. It requires the four steps left,right,right,left.

– In m steps, M can only access tape cells which are at distance at most m
from the current cell. In M ′, all these cells are represented in the current
cell and its direct neighbors. Thus, M ′ has enough information to compute
the next m steps of M (this is hard-wired into M ′). To execute the changes
made in these steps, M ′ again needs four steps.

• regarding acceptance/rejection, M ′ behaves like M .

On inputs of length n, M ′ makes

n+ d
n

m
e + 8d

T (n)

m
e ≤ n+

n

m
+ 8

T (n)

m
+ 2

steps. Since n ∈ o(T), there is an n0 such that for all n > n0, n ≤ T (n)
m

. Assume
w.l.o.g. that n0 ≥ 1. On inputs of length n ≥ n0, M

′ makes the following number of
steps:

n+ n
m

+ 8T (n)
m

+ 2 ≤ 2n+ n
m

+ 8T (n)
m

(n > n0 ≥ 1 implies 2n ≥ n+ 2)

≤ 2T (n)
m

+ T (n)
m2 + 8T (n)

m
(n > n0 implies n ≤ T (n)

m
)

≤ T (n) · 11
m

Now we fix m such that ε ·m ≥ 11. Then T (n) · 11
m

≤ ε · T (n) and thus the machine
is required on all inputs of length greater than n0. There are only finitely many
remaining inputs (those of length n ≤ n0), which can be coded into the transition
function: once the input has been read completely, the machine immediately accepts
or rejects. Clearly, the runtime is within max{n, dε · T e}. o

Theorem 14 shows that if a TM operates in superlinear time c · f(n), then c can be
made arbitrarily small. This justifies our use of the O notation. Theorem 14 also
justifies our definition of P in terms of polynomials of the form nd. Consider e.g. the
polynomial 14n2 + 31n. It is bounded by 45n2 and in the latter we can make the
coefficient equal to one by Theorem 14.

There is an analogous theorem that refers to space consumption rather than to
time consumption.

Theorem 15 (Space Compression Theorem). Let S :
�

→
�

. Then L ∈
DSpace(S) implies L ∈ DSpace(max{n, dε · Se}) for all ε ∈ (0, 1].

There are a bunch of related theorems, showing e.g. that also linear time machines
can be sped up. A speedup theorem for non-deterministic machines exists as well.

18

4.3 The Hierarchy Theorem

We show that if we are more generous when increasing resources, then we can indeed
solve more problems. Results showing this are known as hierarchy theorems. We start
with a special case.

Theorem 16. P (ExpTime.

We thus have the following situation:

P ⊆ NP ⊆ PSpace ⊆ ExpTime

(

It follows that one of the three upper inclusions is strict, but it is unknown which one
this is.

To prove Theorem 16, we represent TMs as words over some fixed alphabet ΣTM

and thus can use them as input to TMs.
W.l.o.g., we assume that the set of states of a TM is of the form {1, . . . , k} for some

k ∈
�

, where 1 is q0, 2 is qacc, and 3 is qrej. The set of symbols is of the same form.
We can represent states and symbols by their binary encoding over the alphabet
{0, 1} ⊆ ΣTM . Encoding the symbols is necessary since TMs may use alphabets
different from ΣTM .

Representing the TM boils down to representing the transition relation, from which
the number of tapes, the set of states and the set of symbols can be recovered. We
assume a fixed representation scheme without giving details. M̂ denotes the ΣTM -
encoding of the TM M and ŵ the ΣTM -encoding of the input word w.

Consider the following language over ΣTM] {;}:

H := {M̂ ; ŵ | DTM M accepts w after at most 2|w| steps}.

Lemma 17. H /∈ P.

Proof. Assume H ∈ P. By Lemma 2, there is a (1-tape) DTM MH such that
L(M) = H and MH is nd-time bounded for some d ∈

�
. Assume w.l.o.g. that d ≥ 2.

Define a new DTM D:

• D duplicates its input w to w;w and then behaves like MH . It rejects if MH

accepts and vice versa.

Since d ≥ 2 and duplication takes O(n2) time, D is fD(n)-time bounded, where
fD(n) ∈ O((2n)d). Let m := |D̂|. “Blow up” D̂ by introducing useless transitions so
that 2m > fD(m). Does D accept D̂? There are two possibilities:

• Yes. Then MH rejects D̂; D̂, which implies D̂; D̂ /∈ H. By definition of H,
D does not accept D̂ within 2m steps. Since 2m > fD(m) and D is fD-time
bounded, D rejects D̂. Contradiction.

• No. Then MH accepts D̂; D̂, implying D̂; D̂ ∈ H and thus D accepts D̂. Con-
tradiction.

o

19

To prove Theorem 16, it remains to show the following

Lemma 18. H ∈ ExpTime.

Proof. Define a TM M ′ that behaves as follows:

1. check if the input is of the form M̂ ; ŵ with M DTM, reject if not;

2. save a copy of M̂ on a separate tape;

3. simulate M on w by “interpreting” M̂ . During the simulation, Tape 1 contains
the encoded contents of the tape of M .

This can be done such that simulating each step of M needs O(|M̂ |) steps;

4. use an additional tape to simultaneously count in binary from 0 to 2|w|, incre-
menting for each step of M ;

5. accept if M accepts w and reject if M rejects or did not terminate after 2|w|

steps.

By construction, L(M) = D and timeD(w) ∈ O(n · 2n). o

What we have just seen is a special case of a much more general theorem called the
hierarchy theorem, whose proof is exactly analogous to the proof of this special case.

Theorem 19 (Time Hierarchy Theorem). Let T, t :
�

→
�

such that T (n) ≥ n,
T time constructible, and t · log t ∈ o(T) (i.e., t · log t grows slower than T). Then
DTime(t) (DTime(T).

It is important that T is time constructible: in the proof of Lemma 18, we needed
to count 2n steps while simulating a TM. In the general case, we need to count T (n)
steps and this is achieved by simulating the TM witnessing time constructibility of T .

Theorem 19 implies Theorem 16: since every polynomial p ultimately becomes
smaller than 2n, P is a subset of DTime(2n). By Theorem 19, DTime(2n) (DTime(2n2

),
the latter being a subset of ExpTime.

Theorem 19 also yields lot of additional results such as DTime(nd) (DTime(nd+1)
for all d ∈

�
(log(nd) ∈ o(n), and thus nd · log(nd) ∈ o(nd+1)).

There is also an analogous non-deterministic version of the time hierarchy theorem.
For example, it yields NP (NExpTime. Finally, there is a space hierarchy theorem.
Its proof is similar to the proof of the time hierarchy theorem.

Theorem 20 (Space Hierarchy Theorem). Let S, s :
�

→
�

such that S(n) ≥
logn, S space constructible, and s ∈ o(S). Then DSpace(s) (DSpace(S).

20

This theorem yields, e.g., PSpace (ExpSpace and DSpace(nd) (DSpace(nd+1) for
all d ∈

�
.

4.4 Basics of NP

Let us return to the question whether there is a better algorithm for CLIQUE. Is
CLIQUE one of the problems in ExpTime\P? Unfortunately, nobody knows, i.e., all
known (deterministic) algorithms require exponential time, but nobody was able to
prove that this is necessarily the case. This is closely related to the famous “P 6= NP”
problem.

Recall that P ⊆ NP ⊆ ExpTime. The following simple non-deterministic algo-
rithm shows that CLIQUE is in NP:

guess a subset S ⊆ V of size k
for all v, v′ ∈ S with v 6= v′

if (v, v′) /∈ E then return “no”
endfor
return “yes”

Here, “guessing” a subset S ⊆ V of size k means that the Turing machine non-
deterministically chooses k elements of V , avoiding repetitions. For example, an NTM
can choose a value from {0, 1} by the transitions

(q, a, q′, 0, R) and (q, a, q′, 1, R).

Since graphs and also nodes of a graph are encoded as words, choosing a node ac-
tually involves a (polynomial) number of such choices. Recall that an NTM accepts
its input if there exists an accepting configuration that is reachable from the initial
configuration. Intuitively, this means that an NTM always makes the correct guess if
possible at all.

It is easily seen that the above algorithm needs only time O(n2) steps and thus
witnesses membership in NP.

The principle underlying the above algorithm can be generalized to an alternative
definition of the complexity class NP.

Definition 21. Let L ⊆ Σ∗. A relation R ⊆ Σ∗ × Γ∗ is a proof relation for L if

• Soundness. (w, p) ∈ R implies w ∈ L.

• Completeness. w ∈ L implies (w, p) ∈ R for some p ∈ Γ∗.

If (w, p) ∈ R, then p is called a proof for w being in L. R is polytime verifiable if

1. there is a k ≥ 1 such that |p| ≤ |w|k for all (w, p) ∈ R;

2. it is in P to decide, given a (w, p) ∈ Σ∗ × Γ∗, whether (w, p) ∈ R.
4

21

As illustrated by the above algorithm, CLIQUE has a polytime-verifiable proof rela-
tion:

{((G, k), S) | S ⊆ V is a k-clique in G}.

Other problems do probably not have such proof relations, consider e.g. the problem
to decide, given a 2n-time bounded DTM M and a word w, whether M accepts w.

Theorem 22. For all L ⊆ Σ∗, L ∈ NP iff L is polytime verifiable.

Proof. “⇐”. If R is a polytime-verifiable proof relation for L with bound |w|k on
the proof length, then a polynomially time bounded NTM can solve L by guessing a
p ∈ Γ∗ of length at most |w|k and then checking in polytime whether (w, p) ∈ R.

“⇒”. If L ∈ NP, there is an NTM M that decides L in time nk, for some k.
Define R as follows: (w, p) ∈ R iff p is the encoding of an accepting computation of
M on input w. Clearly, R is a proof relation for L. Since M runs in polytime and it
is possible to check in polytime whether a sequence of configurations is an accepting
computation of an NTM, R is polytime-verifiable. o

Thus, a problem is in NP iff (i) every “yes” instance has a succint proof of it being
a “yes” instance and (ii) proofs can be checked efficiently. Note that this definition
does not at all use non-deterministic TMs.

We have seen that CLIQUE is in NP. Since P ⊆ NP, however, this doesn’t tell
us much about whether or not CLIQUE is in P. More insight can be gained through
the notion of completeness. Intuitively, a problem is NP-complete if it belongs to the
hardest problems in NP.

Definition 23. Let L ⊆ Σ∗ and L′ ⊆ Γ∗. A polytime reduction from L to L′ is a
function f : Σ∗ → Γ∗ such that

• w ∈ L gdw. f(w) ∈ L′ for all w ∈ Σ∗;

• f can be computed in polynomial time.

If there is such a reduction, we say that L is polynomially reducible to L′ and write
L ≤p L

′. 4

Intuitively, L ≤p L
′ if L′ is at least as hard as L. This underlies the following lemma.

Lemma 24. Let C ∈ {P,NP,PSpace,ExpTime,NExpTime,ExpSpace}. Then C
is closed under polytime reductions, i.e., if L′ ∈ C and L ≤p L

′, then L ∈ C.

For LogSpace, this is not true. The appropriate reduction for those classes is a
logspace reduction, defined like a polytime reduction but computable in logarithmic
space.

Definition 25. Let C ∈ {P,NP,PSpace,ExpTime,NExpTime,ExpSpace}. A
problem L′ is C-hard if L ≤p L′ for all L ∈ C. It is C-complete if it is in C and
C-hard. 4

22

Hardness for LogSpace is defined in terms of logspace reductions. Is NP-hardness a
useful notion? After all, a problem being NP-hard means that this problem can be
“used” to solve all problems in NP.

Theorem 26. NP-complete problems exist.

Proof. (sketch) For M an NTM over Σ, w ∈ Σ∗ and k ≥ 0, let 〈M,w, 1k〉 be an
encoding of M and w followed by a string of k times the symbol “1”. Set

U := {〈M,w, 1k〉 | NTM M accepts w in at most k steps}.

U is in NP. We can construct a polytime-bounded NTM MU that reads its input
copying w to a separate tape and then simulatesM on w by interpretingM ’s transition
table (guessing to make non-deterministic choices). MU accepts if M accepts. It
rejects if M rejects or more than k steps were made (checked by a unary counter on
another tape). This can be done in polytime.

U is NP-hard. Let L ∈ NP. We have to show L ≤p U . There is an nk-time
bounded NTM M with L(M) = L, for some k ∈

�
. The reduction function f takes

input w to 〈M,w, 1nk

〉. Clearly, w ∈ L iff 〈M,w, 1nk

〉 ∈ U . Also, f can be computed
in time O(nk). o

Completeness for a complexity class seems to be a very strong condition. Indeed, the
problem U is contrived since it is a “universal interpreter” for NP problems. Are
there natural NP-complete problems? Surprisingly, it turns out that there are many.

4.5 SAT: A Natural NP-complete Problem

The first natural problem that was proved NP-complete is propositional satisfiability,
i.e.,

SAT := {ϕ | ϕ is a satisfiable formula of propositional logic}.

This is the famous theorem of Cook/Levin.

Theorem 27 (Cook/Levin). SAT is NP-complete.

Proof. In NP: given a formula ϕ0 with variables p1, . . . , pn, guess a truth assignment
for p1, . . . , pn and check whether it satisfies ϕ.

NP-hardness: We have to show that L ≤p SAT for all L ∈ NP. Fix L ∈ NP.
Then there is a (1-tape) NTM M and a k ≥ 0 such that L(M) = L and M is
nk-time bounded. We show how to construct for each input w to M in polytime a
propositional formula ϕw such that ϕw is satisfiable iff M accepts w. This defines the
required polytime reduction.

23

Our aim is to construct ψw such that it describes accepting computations of M
on w. A computation of M on w = a0 · · · an−1 can be visualized as a matrix:

q0, a0 a1 · · · an t · · · t

b q, a1 · · · an t · · · t

b q′, b′ · · · an t · · · t
...

...
...

...
...

...
...

Both the width (tape consumption) as well as the height (number of steps) is bounded
by nk + 1. The matrix entries can be represented using variables:

• Ta,i,t: at time t, tape cell i wears label a;

• Hi,t: at time t, the head is on cell i;

• Sq,t: at time t, M is in state q;

where a ∈ Γ, q ∈ Q, t, i ≤ nk. The following formula describes initial configurations
(recall w = a0 · · · an−1):

ψini := Sq0,0 ∧H0,0 ∧
∧

i<n

Tai,i,0 ∧
∧

n≤i≤nk

Tt,i,0.

Define R(i) = i + 1; L(i) = i − 1 if i > 1 and L(0) = 0. M moves according to its
transition relation:

ψmove :=
∧

q∈Q\{qacc,qrej},a∈Γ,i≤nk,t<nk

(
(Sq,t ∧Hi,t ∧ Ta,i,t) →

∨

(q,a,q′,a′,M)∈∆,M(i)≤nk

(Sq′,t+1 ∧HM(i),t+1 ∧ Ta′,i,t+1)
)

Cells that are not underneath the head do not change:

ψkeep :=
∧

a∈Γ,t<nk,i≤nk

(
¬Hi,t ∧ Ta,i,t → Ta,i,t+1

)

M terminates successfully:

ψacc :=
∨

t≤nk

(
Sqacc,t ∧

∧

t′<t

¬Sqrej,t′
)

There are no double labellings, double heads, etc:

ψaux :=
∧

t,q,q′,q 6=q′

¬(Sq,t ∧ Sq′,t) ∧
∧

i,t,a,a′,a6=a′

¬(Ta,i,t ∧ Ta′,i,t) ∧
∧

t,i,j,i 6=j

¬(Hi,t ∧Hj,t)

where the conjunctions range over the obvious values. Finally, set

φw := ψini ∧ ψmove ∧ ψkeep ∧ ψacc ∧ ψaux.

It is possible to show that ψw is satisfiable iff M accepts w (Exercise). o

24

5 More NP-complete Problems

To prove NP-hardness of CLIQUE, we follow a different and more convenient ap-
proach.

Lemma 28. Let C be a complexity class closed under polytime reductions. If L is
C-hard and L ≤p L

′, then L′ is C-hard.

Thus, to show NP-hardness we can simply give a polytime reduction from any single
NP-hard problem such as SAT. It is convenient to work with a more restricted version.

A literal is a variable or the negation thereof. A clause is a disjunction of literals.
A 3-clause is a clause containing exactly three (different) literals. A 3-formula is a
conjunction of 3-clauses. Set

3SAT = {ϕ | ϕ is a satisfiable 3-formula}.

So an example 3-formula is (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d).

Theorem 29. 3SAT is NP-complete.

Proof. Since SAT is in NP, 3SAT is in NP. To prove hardness, we show that SAT
can be polynomially reduced to 3SAT.

Let ϕ be an instance of SAT, i.e., a formula. Using De Morgan’s rules, we can con-
vert ϕ into negation normal form in polynomial time, i.e., into an equivalent formula
ϕ′ in which negation occurs only in front of propositional letters.

Let Γ be the set of all subformulas of ϕ′, including ϕ′. The cardinality of Γ is
bounded by the length of ϕ′. Define a substitution function that replaces non-literals
σ ∈ Γ with with a fresh variable pσ:

s(σ) :=

{
σ if σ is a literal

pσ otherwise

Set
ψ :=

∧

σ=ϑ∧χ∈Γ

(pσ ↔ s(ϑ) ∧ s(χ)) ∧
∧

σ=ϑ∨χ∈Γ

(pσ ↔ s(ϑ) ∨ s(χ))

It is not hard to see that ϕ is satisfiable iff ψ ∧ pϕ′ is and that the latter can be
constructed in polytime. It remains to show that any formula of the form `1 ↔ `2∧`3,
`1 ↔ `2 ∧ `3, and `1 (with `1, `2, `3 literals) can be converted in polytime into a 3-
formula. We only do one case:

`1 ↔ `2 ∧ `3 Ã (¬`1 ∨ (`2 ∧ `3)) ∧ (¬(`2 ∧ `3) ∨ `1)
Ã (¬`1 ∨ `2) ∧ (¬`1 ∨ `3) ∧ (¬`2 ∨ ¬`3 ∨ `1)
Ã (¬`1 ∨ `2 ∨ x) ∧ (¬`1 ∨ `2 ∨ ¬x) ∧

(¬`1 ∨ `3 ∨ x
′) ∧ (¬`1 ∨ `3 ∨ ¬x′) ∧

(¬`2 ∨ ¬`3 ∨ `1)

where x and x′ are fresh variables. o

25

Interestingly, it can be shown that 2-SAT is in P. We now reduce 3SAT to CLIQUE.

Theorem 30. Clique is NP-complete.

Proof. We have already seen that clique is in NP, so it suffices to show that 3SAT
≤p CLIQUE.

Let ϕ = (`1,1 ∨ `1,2 ∨ `1,3) ∧ · · · ∧ (`k,1 ∨ `k,2 ∨ `k,3) be a 3-formula. We define a
graph Gϕ := (V,E) with

• V = {〈i, j〉 | 1 ≤ i ≤ k and 1 ≤ j ≤ 3};

• E = {{〈i, j〉, 〈i′, j′〉} | i 6= i′ and `i,j does not contradict `i′,j′}.

Then ϕ is satisfiable iff Gϕ has a k-clique.

“⇒”. Let ϕ be satisfiable. Then there is a truth assignment that, in each clause,
makes at least one literal true. Select one true literal from every clause, generating a
set of nodes W ⊆ V . Then W is of cardinality k and a clique in Gϕ: no two elements
of W are from the same clause or associated with contradictory literals.

“⇐”. Let W ⊆ V be a clique in Gϕ of size k. Let Θ be the set of associated literals.
Since W is a clique, Θ contains no contradictory literals and we can construct a truth
assignment t that makes all literals in Θ true. For the same reason, Θ contains no two
literals from the same clause. Since W is of size k, Θ contains one literal from each
clause. Thus, t satisfies ϕ. o

SAT, 3SAT and CLIQUE are just three of many NP-complete problems, many of
them very different in nature. We give one more example.

The subset-sum problem is to determine, given a collection of numbers x1, . . . , xk ∈
�

and a target number t ∈
�

(all in binary), whether there is a subcollection that
adds up to t:

SUBSET-SUM := {(S, t) | S = {x1, . . . , xk} and there is a {y1, . . . , y`} ⊆ S

such that
∑

yi
= t}.

In this definition, we assume that collections are multi-sets and thus allow repetition
of elements.

Theorem 31. SUBSET-SUM is NP-complete.

Proof. A polytime-bounded NTM may simply guess a sub-collection and check
whether it adds up to t. This shows containment in NP.

NP-hardness is shown by reduction from 3SAT. Given a 3-formula ϕ with ` vari-
ables and k clauses, we generate an instance (S, t) of SUBSET-SUM, where S consists
of two numbers yi and zi for each variable xi and two numbers gi and hi for each
clause ci.

Intuitively, (S, t) is constructed such that every sub-collection of S summing up to
t represents a satisfying assignment of ϕ: if the variable xi has truth value 1, then yi

is in the sub-collection of S summing up to t, but zi is not. If xi has truth value 0, it
is the other way around. The gi and hi are needed for technical purposes.

26

As an example, consider the 3-formula

(x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x2 ∨ · · ·) ∧ · · · ∧ (¬x3 ∨ · · · ∨ · · ·).

We define the numbers in (S, t) as given in decimal by the following table:

1 2 3 4 · · · ` c1 c2 · · · ck
y1 1 0 0 0 · · · 0 1 0 · · · 0
z1 1 0 0 0 · · · 0 0 0 · · · 0
y2 1 0 0 · · · 0 0 1 · · · 0
z2 1 0 0 · · · 0 1 0 · · · 0
y3 1 0 · · · 0 1 1 · · · 0
z3 1 0 · · · 0 0 0 · · · 1
...

...
...

...
...

g1 1 0 · · · 0
h1 1 0 · · · 0
g2 1 · · · 0
h2 1 · · · 0
...

...
gk 1
hk 1

t 1 1 1 1 · · · 1 3 3 · · · 3

The decimal representation of each number yi, zi is in two parts. Intuitively, the left
part is used to ensure that exactly one of yi, zi is in S, for all i. The right part reflects
the literals that appear in clauses: the yi/cj field is 1 if the literal xi appears in clause
cj and the zi/cj field is 1 if the literal ¬xi appears in clause cj .

Let ϕ be satisfiable and T a satisfying assignment. Define a sub-collection of S
by selecting yi if T (xi) = 1 and zi is T (xi) = 0. If we add up the resulting numbers,
we obtain 1s in the left-hand part as required, and numbers between 1 and 3 in the
right-hand part. Select enough gi and hi to make all digits in the right part equal to
three.

Let S′ be a sub-collection of S summing up to t. Then exactly one of yi, zi is in
S′, for all i. Define a truth assignment T by setting T (xi) = 1 if yi ∈ S′ and T (xi) = 0
otherwise. This assigment satisfies all clauses cj : in column cj , at most 2 can come
from the gi and hi, so at least 1 must come from some yi or zi. Since the corresponding
literal occurs in cj , the clause is satisfied. o

5.1 P vs. NP

We have seen several examples for problems in NP that are hardest among all such
problems. It is likely that no such problem is in P.

The problem whether P = NP is one of the most important and most difficult
open problems in computer science and mathematics. We can state in in two ways:

27

• Using the definition: are polytime-bounded NTMs more powerful than polytime-
bounded DTMs?

But why should NTMs be so important?

• Using the alternative characterization: is checking the existence of a polysized
proof more difficult than verifying a given polysized proof (both using DTMs)?
Or even, are polysized proofs useless?

This seems much more relevant.

P = NP seems unlikely and it is generally believed that P 6= NP although no proof
exists (the Clay Mathematics Institute has even set out a prize of one million dollars
for a proof).

The P = NP question becomes even more important by the fact that any single
NP-complete problem such as clique is closely tied to it. Trivially, if we can prove of
any problem in NP (such as NP-complete ones) that it is not in P, then P 6= NP.
Additionally:

Theorem 32. If there is an NP-hard problem in P, then P = NP.

Proof. Let L be NP-hard and in P. Let L′ ∈ NP. Since L is NP-hard, L′ ≤p L.
Since L is in P, it follows that L′ ∈ P. o

Thousands of problems have been shown NP-complete. Things reached a situation
where people seem to expect any problem in NP to be either NP-complete or in P.
This naive view is wrong.

Theorem 33 (Ladner’s Theorem). If P 6= NP, then there is an L ∈ NP such that
L is neither in P nor NP-complete.

A proof of this Theorem if out of scope. The basic idea is to start with an NP-complete
problem such as SAT and to “punch holes into it”, i.e., modifying it by removing “yes”
instances in a way such that (i) all possible reductions from NP-complete problems
fail but (ii) it is still so hard that any polytime algorithm fails as well.

Problems that are as in Theorem 33 are called NP-intermediate. Nobody has yet
found a natural NP-intermediate problem (under the assumption that P 6= NP). Two
problems that are candidates for being NP-intermediate are:

• Graph isomorphism. Given two undirected graphs G1 and G2, decide whether
it is possible to rename the nodes in G2 such that G1 = G2;

• Integer factorization. Given integers i and j, does i have a factor less than j?
This problem is very important for cryptography.

A final remark: the arguments we have used to show that problems are in NP were
always of a trivial kind. This need not alway be the case. For example, it is possible
but not trivial to show that the implication between negation-free formulas of first-
order logic is in NP (and, in fact, NP-complete). Showing this is not a triviality.

28

5.2 The Complement of NP

For some complexity classes such as NP, it is important to carefully distinguish be-
tween the class and its complement.

Definition 34. Let C be a complexity class. Then co-C is the class of languages
L ⊆ Σ∗ such that Σ∗ \ L ∈ C. 4

In particular, co-NP is the class of all problems whose complement is in NP. This
is an interesting class and we will look at it shortly. In contrast, complements of
deterministic classes are not very interesting.

Lemma 35. If C is a deterministic (time or space) complexity class, then C = co-C.

Proof. “⊆”. Let L ∈ C and take a TM M witnessing this. Since M is deterministic,
it has only a single computation on every input. This means that we can convert M
into a maching for L (with the same time and space consumption) by simply swapping
qacc and qrej. Thus, L ∈ C, implying L ∈ co-C.

“⊇”. Let L ∈ co-C. Then L ∈ C and reasoning as in the previous direction we get
L ∈ C. o

Observe that the proof of Lemma 35 does not work for non-deterministic TMs. If such
a TM accepts an input w, it may have multiple computations on w, some of them
accepting and some of them rejecting. Swapping qacc and qrej will not change this
situation. Lemma 35 leaves us with the following (potentially) interesting complement
classes:

co-NP, and co-NExpTime.

We will focus on co-NP. In terms of our alternative characterization, co-NP is the
set of problems L such that there is a succinct and polytime verifiable proof of non-
membership in L. For example,

Theorem 36. Validity of propositional formulas is in co-NP.

Proof. We have to show that non-validity is in NP. We do this by reduction to
satisfiability: ϕ is not valid iff ¬ϕ is satisfiable. o

For complement classes, hardness and completeness are defined as usual (in terms
of polytime or logspace reductions).

Theorem 37. L is NP-complete iff L is co-NP-complete.

Proof. By definition, L ∈ NP iff L ∈ co-NP. It thus suffices to show that L is
NP-hard iff L is co-NP-hard.

Assume that L ⊆ Σ∗ is NP-hard. To prove that L is co-NP-hard, we have to show
that L′ ≤p L for all L′ ∈ co-NP. Let L′ ∈ co-NP with L′ ⊆ Γ∗. Then L

′
∈ NP and

thus L
′
≤p L which is witnessed by a polytime reduction f : Γ∗ → Σ∗ from L′ to L. It

is easily seen that f is also a polytime reduction from L′ to L, which proves L′ ≤p L.
The converse direction is analogous. o

29

Thus, propositional unsatisfiability and the co-clique problem (given a graph G and
a k ≥ 1, does G not have a clique of size k?) are co-NP-complete. Validity of
propositional formulas is also co-NP-complete: by Theorem 37, it suffices to show
that non-validity is NP-complete. We have already shown that tis in in NP. NP-
hardness follows by reduction of satisfiability: ϕ is satisfiable iff ¬ϕ is not valid.

It is not hard to see that C ⊆ C ′ implies co-C ⊆ co-C ′. Thus co-P ⊆ co-NP, i.e.,
P ⊆ co-NP. Also, co-NP ⊆ co-PSpace, i.e., co-NP ⊆ PSpace.

Thus, both NP and co-NP are situated between P and PSpace. Not much is
known about the exact relationship between NP and co-NP. Just like P 6= NP, the
following are commonly believed to be true, but proofs do not exist:

1. NP 6= co-NP;

2. NP∩co-NP 6= P.

It is easily seen that each of these two conjectures implies P 6= NP (whereas their
complement does not imply P = NP).

6 The Polynomial Hierarchy

It is possible to identify a much richer structure between P and PSpace than just
NP and co-NP. This is based on oracle Turing machines.

Definition 38. An oracle TM MO is a (deterministic or non-deterministic) TM
equipped with an oracle O, which is simply a language O ⊆ Σ∗. An oracle TM has
an additional oracle tape and three distinguished states q?, q+, and q−. For all states
except q?, transitions are defined as usual. If MO enters state q?, then the next state
is q+ if the word on the oracle tape belongs to O, and q− otherwise. This transition
is instantaneous, and does not change the head positions and tape contents. 4

Thus, an oracle TM MO is equipped with a “sub-procedure” for deciding O which
is viewed as a black box. In particular, the time and space consumption of this
“procedure” are not counted. Indeed, O does not even have to be decidable.

Definition 39.

• P
O := {L | L is decided by an oracle DTM MO in polynomial time};

• NP
O := {L | L is decided by an oracle NTM MO in polynomial time};

• For a complexity class C, P
C :=

⋃
L∈C P

L and NP
C :=

⋃
L∈C NP

L.

4

For example, a problem L is in P
NP if there exists a polytime-bounded oracle DTM

MO whose oracle O is in NP and such that L(MO) = L. Note that we cannot show
that NP = P

NP by simply joining MO and a polytime-bounded NTM M for O into a
new NTM N : to be sure that it should switch to q−, a single computation of N would

30

have to analyse all computations of M , which does not seem possible. In contrast,
P

P = P is easily shown along these lines.

We can now define more complexity classes between P and PSpace: the polyno-
mial hierarchy.

Definition 40. For k ≥ 0, we inductively define the complexity classes Σp
k, Πp

k, and
∆p

k as follows:

• Σp
0 := Πp

0 := ∆p
0 := P

• Σp
k+1 := NP

Σp

k

• Πp
k+1 := co-Σp

k+1

• ∆p
k+1 := P

Σp

k

4

It is not very difficult to prove that ∆p
1 = P (since P

P = P), Σp
1 = NP, and Πp

1 =
co-NP.

It is possible to derive the following inclusions:

⊆ ⊆

P

∆
p
3

⊆ ⊆

NP co-NP

⊆ ⊆

∆
p
2

⊆ ⊆

Σ
p
2 Π

p
2

⊆ ⊆

Σ
p
3 Π

p
3

⊆ ⊆

...

There is also a complexity class for the whole polynomial hierarchy:

Definition 41. PH :=
⋃

k≥0 Σp
k. 4

31

Obviously, P ⊆ PH. It is also possible to show that PH ⊆ PSpace. It is not known
whether any of the inclusions shown above is strict. In particular, it is not known
whether the polynomial hierarchy collapses, i.e., whether there is a k ≥ 0 such that
PH = Σp

k. However, the following are known:

• If P = NP, then P = PH, i.e., the polynomial hierarchy collapses to P;

• If PH = PSpace, then the polynomial hierarchy collapses.

Hardness for all these complexity classes is defined in terms of polytime reductions.
We give an example for a Πp

2-complete problem.

In propositional logic, we may view a truth assignment t as the set of all those
variables that are true under the assignment. A model of a propositional formula ϕ
is a truth assignment t that satisfies ϕ. A model of ϕ is called minimal if all truth
assignments t′ (t do not satisfy ϕ. The minimal implication problem is to decide,
given two formulas ϕ and ψ, whether all minimal models for ϕ are models of ψ.

We only show that minimal implication is in Πp
2 = co-NP

NP. As a preliminary, we
show that the following problem is in NP: given a formula ϕ and a truth assignment
t, check whether there is a model t′ of ϕ with t′ (t. Let us call this problem L. L
is in NP since a polytime NTM may simply guess an assignment t′ and then check
whether it is as required.

Now we show that the complement of minimal implication is in NP
NP: given ϕ

and ψ, a polytime NTM may guess a truth assignment t and verify that (1) t is a
model of ϕ and of ¬ψ and (2) t is minimal. To do the latter, it calls an oracle for L
with input t and ϕ and negates the result.

Note (again) that the two NTMs cannot be easily joined into one: since we negate
the result returned by the oracle, we would have to consider all its computations.

Minimal implication is also hard for Πp
2, but we do not have time to prove that.

A large source for problems that are complete for classes in the polynomial hierarchy
comes from so-called non-monotonic logics.

32

7 PSpace

Recall that PSpace-completeness is defined similarly to NP-completeness, i.e., in
terms of polytime reductions. The prototypical PSpace-complete problem is the
validity of quantified Boolean formulas (QBFs).

Definition 42. A quantified Boolean formula (QBF) is of the form

Q1p1 · · ·Qnpn.ϕ

where Qi ∈ {∀, ∃} and ϕ is a formula of propositional logic using only variables
p1, . . . , pn. 4

Validity is defined via induction on the length of the quantifier prefix. If ϕ is a
propositional formula, then ϕ[p/1] denotes ϕ with p replaced by 1 (logical truth), and
similarly for ϕ[p/0].

Definition 43 (QBF Validity). A QBF formula Q1p1 · · ·Qnpnϕ is valid iff

1. Q1 = ∃ and one of Q2p2 · · ·Qnpnϕ[p1/0] and Q2p2 · · ·Qnpnϕ[p1/1] is valid;

2. Q1 = ∀ and both Q2p2 · · ·Qnpnϕ[p1/0] and Q2p2 · · ·Qnpnϕ[p1/1] are valid.

3. n = 0 and ϕ (which then does not contain any variables) evaluates to true.
4

Consider the QBF ψ = ∀p1∃p2∀p3 . p1 → p2 ∨ p3. The validity of ψ can be checked
using an and-or-tree:

∃

∀

p3 = 0 p3 = 1p3 = 1

p1 = 1

p2 = 1p2 = 1

p1 = 0

p2 = 0 p2 = 0

p3 = 0 p3 = 0

p3 = 1

p3 = 0 p3 = 0

p3 = 1 p3 = 1p3 = 1

1 1 1 1 1 1 1

∀

0

∧

∨ ∨

∧∧ ∧ ∧ ∧

Observe that each level of the tree corresponds to one of the quantifiers, ∀-levels use
∧-branching and ∃-levels use ∨-branching.

Define
QBF := {ϕ | ϕ is a valid quantified Boolean formula}.

Although quantification trees are of exponential size, QBF can be decided in PSpace.

Theorem 44. QBF is in PSpace.

33

Proof. The following recursive procedure decides validity of QBFs:

Valid(Q1p1 · · ·Qnpn.ϕ)
if n = 0 then
ψ = ϕ is a propositional formula over {0, 1}
evaluate ψ and return the result

endif
set v := Valid(Q2p2 · · ·Qnpn.ϕ[p/0]) and v′ := Valid(Q2p2 · · ·Qnpn.ϕ[p/1])
if ψ begins with ∃p then

return v ∨ v′

else (ψ begins with ∀p)
return v ∧ v′

endif

The recursion depth is bounded by the length of the quantifier prefix. For each
recursive call, one needs to store the current QBF and whether the purpose of the call
was to compute v or v′. In total, this requires quadratic space. o

It is easy to show that QBF is NP-hard by reduction from SAT: a propositional
formula ϕ in variables p1, . . . , pn is satisfiable iff ∃p1 · · · ∃pn.ϕ is valid. Indeed, QBF
is even PSpace-hard.

Theorem 45. QBF is PSpace-hard, thus PSpace-complete.

Proof. We show that L ≤ QBF for all L ∈ PSpace. Fix L ∈ PSpace. Then there
is a d ≥ 0 and an nd-space bounded (1-tape) DTM M = (Q,Σ,Γ, δ, q0, qacc, qrej) such
that L(M) = L. We construct in polytime for each input w a QBF ψw such that M
accepts w iff ψw is valid. Since M may need exponential time, we cannot use the same
proof as in Cook’s theorem, e.g. introducing variables Sq,t saying that M is in state q
at time t.

Instead, we basically reformulate the proof of Savitch’s theorem “in the language
of logic”. That proof was based on a predicate Path(c, c′, i) expressing that there is a
path of length at most 2i from c to c′ in GM (nd). A configuration is represented by a
tuple of the following variables:

• Sq for every q ∈ Q describes the state;

• Ta,i for every a ∈ Γ and i ≤ nd describes the symbol on the i-th tape cell;

• Hi for every i ≤ nd describes the head position.

The following formula ensures that such a tuple C encodes a valid configuration:

ψconf(C) :=
∨

q∈Q

Sq ∧
∧

q,q′∈Q,q 6=q′

¬(Sq ∧ Sq′) ∧
∨

i≤nd

Hi ∧
∧

i,i′≤nd,i6=i′

¬(Hi ∧Hi′) ∧

∧

i≤nd

∨

a∈Γ

Ta,i ∧
∧

i≤nd,a,a′∈Γ,a6=a′

¬(Ta,i ∧ Ta′,i)

34

The description of Path(c, c′, i) is based on steps of M as described by the following
formula (where L(i) and R(i) is defined as in the proof of Cook’s theorem):

ψnext(C,C
′
) := ψconf(C) ∧ ψconf(C

′
) ∧

∧

i≤nd

(
Hi →

(∧

j≤nd,j 6=i,a∈Γ

(Ta,j ↔ T ′
a,j) ∧

∧

δ(q,a)=(q′,a′,M),M(i)≤nd

(Sq ∧ Ta,i) → (S′
q ∧ T

′
b,i ∧H

′
M(i))

))

We can define Path(c, c′, i) for the case i = 0 as follows:

ψ0
reach(C,C

′
) := ψeq(C,C

′
) ∨ ψnext(C,C

′
)

where ψeq(C,C
′
) is a formula saying that C and C

′
are identical. To define the case

i > 0, it is tempting to put

ψi
reach(C,C

′
) := ∃C

′′
.ψi−1

reach(C,C
′′
) ∧ ψi−1

reach(C
′′
, C

′
)

but this involves nested duplication and implies that the length of ψi
reach is at least 2i.

The way out is provided by universal quantifiers:

ψi
reach(C,C

′
) := ∃C

′′
∀K∀K

′
.
(

(ψeq(C,K) ∧ ψeq(C
′′
,K

′
)) ∨ (ψeq(C

′′
,K) ∧ ψeq(C

′
,K

′
))

→ ψi−1
reach(K,K

′
)
)

It remains to devise formulas ψw
input(C) expressing that C is the initial configuration

on input w and ψacc(C) saying that C is accepting (left as exercise).

If M is nd-space bounded, then it is T (n) = 2c·nd

-time bounded for some c ≥ 1.
The final reduction formula is:

ψw := ∃C∃C ′.(ψw
input(C) ∧ ψacc(C) ∧ ψ

T (|w|)
reach (C,C

′
))

Strictly, ψw is not a QBF since the quantifiers do not occur as a prefix. However, it
is possible to “pull out” quantifiers (exercise). o

Typical PSpace-hard problems include generalizations of games such as “given an
n × n checkerboard with some red kings and some blackkings on it and the player
whose turn it is, does black have a winning strategy?”. Also in formal languages,
automata theory, and logic there are many PSpace-complete problems. An example
for the first group is universality of regular expressions, i.e., “given a regular expression
π, is L(π) = Σ∗?

It is possible to modify the QBF problem such that a complete problem for the
complexity classes Σp

k and Πp
k of the polynomial hierarchy is obtained. In the following,

we abbreviate ∃x1.∃x2. · · · ∃xn.ϕ with ∃X.ϕ, and likewise for universal quantifiers.
Then, a Σk-QBF is a QBF of the form

∃X1.∀X2. · · ·QkXk.ϕ

35

i.e., the quantifier prefix consists of k alternating blocks of existential and universal
quantifiers, starting with an existential block. We define Πk-QBFs analogously, but
starting with a universal block.

Theorem 46. For all k ≥ 1, Σk-QBF is Σp
k-complete and Πk-QBF is Πp

k-complete.

36

Exercise Sheet 1

for the lecture

Complexity Theory

Exercise 1

Words over the alphabet Σ = {0, 1} can be viewed as the binary representation of
a non-negative integer (lowest bit rightmost, possibly with additional leading zeros).
Construct a 1-tape DTM that works over the alphabet Σ and does the following:
when started on an input word w representing the number n ∈

�
, it converts w into

the binary representation of n + 1 and stops in an accepting state. To describe the
transition function, draw the state diagram rather than using tuple notation.

Exercise 2

A palindrome is a word that reads the same backwards, e.g. “reittier” or “malayalam”.
Find a k-tape DTM (for some self-chosen k) that works over the alphabet Σ = {a, b}
and decides whether its input is a palindrome. The first tape is the input tape (and
thus cannot be modified). On every other tape, at most O(log(n)) cells may be used.
It suffices to describe the machine on an intuitive level.

Exercise 3

Let a 1∗-DTM be a DTM that is equipped with a single two-side infinite tape. Show
that every language decided by a 1∗-DTM is also decided by a 1-DTM within the
same time and space bounds (up to a constant).

Exercise 4

For f, g function from
�

to
�

, we write f ∈ Θ(g) if f ∈ O(g) and g ∈ O(f). Intuitively,
f ∈ Θ(g) if f and g have the same rate of growth. Show the following: The rate of
growth of a polynomial is captured by the polynomial’s first non-zero term, i.e.: if
p(n) is a polynomial of degree d, then p(n) ∈ Θ(nd).

Exercise 5

Complete Theorem 3 by showing that (dT (n)+1 − 1) · c · T (n) ∈ 2O(T (n)).

37

Exercise Sheet 2

for the lecture

Complexity Theory

Exercise 1

Prove Lemma 24: All C ∈ {P,NP,PSpace,ExpTime,NExpTime,ExpSpace} are
closed under polytime reductions, i.e., if L′ ∈ C and L ≤p L

′, then L ∈ C

Exercise 2

Finish the proof of Theorem 27 by showing that ψw is satisfiable iff M accepts w.

Exercise 3

Prove Lemma 28: If C is a complexity class closed under polytime reductions, then L
being C-hard and L ≤p L

′ implies that L′ is C-hard.

Exercise 4

HALF-CLIQUE is the problem to decide, given a graph G with n ≥ 1 nodes, whether
G contains a clique of size n/2. Prove that HALF-CLIQUE is NP-complete (Hint: to
show NP-hardness, use a reduction from CLIQUE).

Exercise 5

SET-SPLITTING is the following problem: given a set S and a collection C =
S1, . . . , Sk of subsets of S, for some k > 0, decide whether all elements of C can
be colored red or black such that no Si has all its elements colored with the same
color. Show that SET-SPLITTING is NP-complete (Hint: to show NP-hardness, use
a reduction from 3SAT).

38

Foundations Exam

for the lecture

Complexity Theory

in Winter Semester 2006/2007

Exercise 1

For each of the following statements, say whether it is true or false. Justify your
answers.

1. 3SAT is in PSpace;

2. SUBSET-SUM ≤p CLIQUE;

3. LogSpace 6= ExpTime;

4. if L ≤p L
′ and L′ is NP-hard, then L is NP-hard;

Exercise 2

A Hamilton path in an undirected graph G = (V,E) is a path that visits each node
exactly once. More precisely, a Hamilton path in G is a sequence of distinct vertices
v0, . . . , vn−1 such that {v0, . . . , vn−1} = V and {vi, vi+1} ∈ E for all i < n.

Argue that the following problem is in NP: given a graph G = (V,E), decide
whether there is a Hamilton path in G.

Exercise 3

A system of inequalities S is a finite set of inequalities of the form

c1 · v1 + c2 · v2 + · · · + cn · vn ∼ d

where the ci are non-negative integer coefficients, d is a non-negative integer, the vi

are variables, and ∼ is one of =, 6=, <, ≤, ≥, and >. A solution to S is an assignment
of non-negative integer values to variables such that all inequalities are satisfied.

Use a reduction from 3SAT to prove that the following problem is NP-hard: given
a system of inequalities, decide whether it has a solution.

39

