Lemma 1.4 Let ϕ be a pinpointing formula for \mathcal{T} w.r.t. $A \sqsubseteq_{\mathcal{T}} B$. If valuations are ordered by set inclusion, then

$$M := \{ \mathcal{T}_{\mathcal{V}} \mid \mathcal{V} \text{ is a minimal valuation satisfying } \phi \}$$

is the set of all MinAs for \mathcal{T} w.r.t. $A \sqsubseteq_{\mathcal{T}} B$.

Proof. The mapping lab: $\mathcal{T} \to \text{lab}(\mathcal{T})$ is bijective. Thus, its extension to the powersets

$$lab: \mathcal{P}(\mathcal{T}) \to \mathcal{P}(lab(\mathcal{T})): \mathcal{S} \mapsto lab(\mathcal{S})$$

is also bijective (and has as its inverse the mapping $\mathcal{T}_{\bullet} : \mathcal{V} \mapsto \mathcal{T}_{\mathcal{V}}$). lab is even an isomorphism between the posets $(\mathcal{P}(\text{lab}(\mathcal{T})), \subseteq)$ and $(\mathcal{P}(\mathcal{T}), \subseteq)$, because of the monotonicity of the image of any mapping.

If we set $\mathcal{C} := \{ \mathcal{S} \subseteq \mathcal{T} \mid A \sqsubseteq_{\mathcal{S}} B \}$ and $\mathcal{D} := \{ \mathcal{V} \subseteq \text{lab}(\mathcal{T}) \mid \mathcal{V} \text{ satisfies } \phi \}$, the restriction of lab to \mathcal{C} is still an isomorphism from \mathcal{C} to \mathcal{D} . This follows from the assumption that ϕ is a pinpointing formula for \mathcal{T} w.r.t. $A \sqsubseteq_{\mathcal{T}} B$, i.e. for every $\mathcal{S} \subseteq \mathcal{T}$ we have that $A \sqsubseteq_{\mathcal{S}} B$ iff $\text{lab}(\mathcal{S})$ satisfies ϕ .

Thus, the sets of minimal elements of \mathcal{C} and \mathcal{D} are mapped into each other by lab and \mathcal{T}_{\bullet} :

$$M = \{ \mathcal{T}_{\mathcal{V}} \mid \mathcal{V} \subseteq \text{lab}(\mathcal{T}) \text{ is a minimal valuation satisfying } \phi \}$$
$$= \{ \mathcal{T}_{\text{lab}(\mathcal{S})} \mid \mathcal{S} \subseteq \mathcal{T} \text{ is a minimal axiom set with } A \sqsubseteq_{\mathcal{S}} B \}$$
$$= \{ \mathcal{S} \mid \mathcal{S} \subseteq \mathcal{T} \text{ is a minimal axiom set with } A \sqsubseteq_{\mathcal{S}} B \}$$