Input : $A, B : C_N; \mathcal{T}_S$: static, \mathcal{T}_D : dynamic Output: minimal subset $S \subseteq \mathcal{T}_D$ such that $A \sqsubseteq_{\mathcal{T}_S \cup S} B$

- 1 If $|\mathcal{T}_D|=1$ then return \mathcal{T}_D
- $_{\scriptscriptstyle 2}$ $\mathcal{T}_1,\mathcal{T}_2$:= halve \mathcal{T}_D
- $_{3}$ If $A \sqsubseteq_{\mathcal{T}_{S} \cup \mathcal{T}_{1}} B$ then return extract-MinA $(A, B, \mathcal{T}_{S}, \mathcal{T}_{1})$
- $_{4} \text{ If } A \sqsubseteq_{\mathcal{T}_{S} \cup \mathcal{T}_{2}} B \text{ then return extract} \text{MinA}(A, B, \mathcal{T}_{S}, \mathcal{T}_{2})$
- $_{5} S_{1} := \operatorname{extract} \operatorname{MinA}(A, B, \mathcal{T}_{S} \cup \mathcal{T}_{2}, \mathcal{T}_{1})$
- $_{6} S_{2} := \operatorname{extract} \operatorname{MinA}(A, B, \mathcal{T}_{S} \cup S_{1}, \mathcal{T}_{2})$
- 7 return $S_1 \cup S_2$

faulty variant of line 6: $S'_2 := \text{extract-MinA}(A, B, \mathcal{T}_S \cup \mathcal{T}_1, \mathcal{T}_2)$

Example-Call such that both variants differ:

extract-MinA $(A, D, \emptyset, \mathcal{T}_{\epsilon})$

 $\mathcal{T}_{\epsilon} := \{ A \sqsubseteq B, C \sqsubseteq D, A \sqsubseteq C, B \sqsubseteq D \}$

halve $\mathcal{T}_{\epsilon} \to \mathcal{T}_1 := \{A \sqsubseteq B, C \sqsubseteq D\}, \mathcal{T}_2 := \{A \sqsubseteq C, B \sqsubseteq D\}. A \sqsubseteq D$ doesn't follow from $\emptyset \cup \mathcal{T}_1$ or $\emptyset \cup \mathcal{T}_2$

 $S_{1} := extract - MinA\left(A, D, \mathcal{T}_{S} = \left\{A \sqsubseteq C, B \sqsubseteq D\right\}, \mathcal{T}_{D} = \left\{A \sqsubseteq B, C \sqsubseteq D\right\}\right) \rightarrow \left\{A \sqsubseteq B\right\}$

 $S_2 := extract - MinA(A, D, \mathcal{T}_S = \{A \sqsubseteq B\}, \mathcal{T}_D = \{A \sqsubseteq C, B \sqsubseteq D\}). \text{ halve } \mathcal{T}_D \to \{A \sqsubseteq C\}, \{B \sqsubseteq D\}, \text{ because of line } 4 \text{ extract} - MinA(A, D, \{A \sqsubseteq B\}, \{B \sqsubseteq D\}) \text{ is returned and we have } S_2 = \{B \sqsubseteq D\} \text{ (line 1)}$

 $S'_{2} := extract - MinA(A, D, \mathcal{T}_{S} = \{A \sqsubseteq B, C \sqsubseteq D\}, \mathcal{T}_{D} = \{A \sqsubseteq C, B \sqsubseteq D\}). \text{ halve } \mathcal{T}_{D} \to \{A \sqsubseteq C\}, \{B \sqsubseteq D\}, \text{ because of line } 3 \ extract - MinA(A, D, \{A \sqsubseteq B, C \sqsubseteq D\}, \{A \sqsubseteq C\}) = \{A \sqsubseteq C\} \text{ is returned.}$

The output is $S_1 \cup S_2 = \{A \sqsubseteq B, B \sqsubseteq D\}$ which is correct and $S_1 \cup S'_2 = \{A \sqsubseteq B, A \sqsubseteq C\}$ which is not correct because it is not a MinA. One can see that for the computation of S_2 , S_1 has to be a in the static part, because S_1 is already fixed as a part of the MinA (line 7).