Prof. Dr. F. Baader

Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-39167

1. Exercises for the Course 'Automata and Logic'

Exercise 1:

Let $\Sigma = \{a, b\}$ be an alphabet and $\alpha := a^+b^* + b^+a^*$ a regular expression over Σ . Give a regular expression β for the complement language of α (that is, β should describe the set of words over Σ that are not expressed by α).

Exercise 2:

Let the non-deterministic automaton $\mathcal{A} := (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_1, q_2\})$ be given by the following transition system:

Apply the power set construction to \mathcal{A} in order to obtain a *deterministic* automaton that accepts the same language as \mathcal{A} .

Exercise 3:

For a language $L \subseteq \Sigma^*$, the Nerode right congruence ρ_L is defined as follows: for $u, v \in \Sigma^*$, $u\rho_L v$ iff for all $w \in \Sigma^*$ it holds that

$$uw \in L \Leftrightarrow vw \in L.$$

Let $\mathcal{A}_L := (Q_L, \Sigma, q_L, \delta_L, F_L)$ be a deterministic automaton where:

- $Q_L := \{ [u] \mid u \in \Sigma^* \}$ where $[u] := \{ v \in \Sigma^* \mid u \rho_L v \},\$
- $q_L := [\varepsilon]$ for ε the empty word,
- $\delta_L([u], a) := [ua]_{\rho_L}$ for $u \in \Sigma^*, a \in \Sigma$,
- $F_L := \{ [u] \mid u \in L \}.$

Show the following:

- (a) \mathcal{A}_L is well-defined
- (b) \mathcal{A}_L is minimal; i.e. for every deterministic automaton $\mathcal{A} := (Q, \Sigma, q_0, \delta, F)$ with $L(\mathcal{A}) = L$, it holds that $|Q_L| \leq |Q|$.

Exercise 4:

Let \mathcal{A} be the automaton accepting words over the alphabet $\Sigma := \{a, b\}$, described by the following transition system:

Construct an automaton \mathcal{A}' such that $L(\mathcal{A}') = L(\mathcal{A})$ and \mathcal{A}' is minimal.

Exercise 5:

Prove the following by giving a decision procedure:

- (a) The *emptiness problem* for regular languages is decidable.
- (b) The *inclusion problem* for regular languages is decidable.