3. Exercises for the Course
‘Automata and Logic’

Exercise 11:
Let \(\Sigma \) be an alphabet and \((M, \odot, 1)\) a monoid. Prove that every function \(f : \Sigma \to M \) can be uniquely extended to a (monoid-)homomorphism \(\Phi : \Sigma^* \to M \).

Exercise 12:
Let \(\Sigma := \{a, b\} \), \(M := \{0, 1, 2\} \), and define \(\odot : M \times M \to M \) as \(x \odot y := (x + y) \mod 3 \). We define mappings \(\Phi, \Phi' : \Sigma^* \to M \) by setting \(\Phi(w) := \vert w \vert \mod 3 \) and \(\Phi'(w) := \vert w \vert_a \mod 3 \), where \(\vert w \vert \) denotes the length of \(w \) and \(\vert w \vert_a \) the number of times the symbol “a” appears in \(w \).

(a) Show that both \(\Phi \) and \(\Phi' \) are monoid homomorphisms from \((\Sigma^*, \cdot, \varepsilon)\) into \((M, \odot, 0)\).

(b) For each of the languages \(\Phi^{-1}(\{0, 2\}), \Phi'^{-1}(\{1\}) \) and \((\Phi')^{-1}(\{1\}) \) devise a finite automaton that recognizes the language.

Exercise 13:
For a language \(L \subseteq \Sigma^* \), we use \(\bar{L} \) to denote the complement of \(L \): \(\bar{L} := \Sigma^* \setminus L \). Let \(\Sigma \) be an alphabet, \(L \subseteq \Sigma^* \) a language and \((M, \odot, 1)\) a monoid. Prove that if \(L \) is accepted by \((M, \odot, 1)\), then \(\bar{L} \) is also accepted by \((M, \odot, 1)\).

Exercise 14:
Determine the syntactic monoid of the language \(a^*ba^* \).

Exercise 15:
Let \(L \subseteq \Sigma^* \) and \(\approx \) be an equivalence relation on \(\Sigma^* \). Consider the following property:

\[
\text{for all } u, v \in \Sigma^*, \text{ if } u \in L \text{ and } u \approx v, \text{ then } v \in L. \tag{\ast}
\]

(a) The proof of Corollary 1.13 from the lecture depends on the fact that the syntactical congruence \(\sim_L \) has Property (\ast). Prove this.

(b) Show that \(\sim_L \) is the coarsest congruence relation with Property (\ast).

(c) Show that the Nerode right congruence \(\rho_L \) is the coarsest right congruence with Property (\ast).

Note: An equivalence relation \(\approx_2 \) is coarser than \(\approx_1 \) if, for every \(x, y \), \(x \approx_1 y \) implies \(x \approx_2 y \) (in particular, \(\approx_2 \) has at most as many equivalence classes as \(\approx_1 \)).

Exercise 16:
Show that any submonoid of a finite group is also a group.