Prof. Dr. F. Baader

Nöthnitzer Str. 46 01187 Dresden Tel.: 0351/463-39167

3. Exercises for the Course 'Automata and Logic'

Exercise 11:

Let Σ be an alphabet and $(M, \circ, 1)$ a monoid. Prove that every function $f : \Sigma \to M$ can be uniquely extended to a (monoid-)homomorphism $\Phi : \Sigma^* \to M$.

Exercise 12:

Let $\Sigma := \{a,b\}, M := \{0,1,2\}$, and define $\circ : M \times M \to M$ as $x \circ y := (x+y) \mod 3$. We define mappings $\Phi, \Phi' : \Sigma^* \to M$ by setting $\Phi(w) := |w| \mod 3$ and $\Phi'(w) := |w|_a \mod 3$, where |w| denotes the *length* of w and $|w|_a$ the number of times the symbol "a" appears in w.

- (a) Show that both Φ and Φ' are monoid homomorphisms from $(\Sigma^*, \cdot, \varepsilon)$ into $(M, \circ, 0)$.
- (b) For each of the languages $\Phi^{-1}(\{0,2\}), \Phi^{-1}(\{1\})$ and $(\Phi')^{-1}(\{1\})$ devise a finite automaton that recognizes the language.

Exercise 13:

For a language $L \subseteq \Sigma^*$, we use \bar{L} to denote the complement of L: $\bar{L} := \Sigma^* \setminus L$. Let Σ be an alphabet, $L \subseteq \Sigma^*$ a language and $(M, \circ, 1)$ a monoid. Prove that if L is accepted by $(M, \circ, 1)$, then \bar{L} is also accepted by $(M, \circ, 1)$.

Exercise 14:

Determine the syntactic monoid of the language a^*ba^* .

Exercise 15:

Let $L \subseteq \Sigma^*$ and \approx be an equivalence relation on Σ^* . Consider the following property:

for all
$$u, v \in \Sigma^*$$
, if $u \in L$ and $u \approx v$, then $v \in L$.

- (a) The proof of Corollary 1.13 from the lecture depends on the fact that the syntactical congruence \sim_L has Property (*). Prove this.
- (b) Show that \sim_L is the coarsest congruence relation with Property (*).
- (c) Show that the Nerode right congruence ρ_L is the coarsest right congruence with Property (*).

Note: An equivalence relation \approx_2 is *coarser* than \approx_1 if, for every $x, y, x \approx_1 y$ implies $x \approx_2 y$ (in particular, \approx_2 has at most as many equivalence classes as \approx_1).

Exercise 16:

Show that any submonoid of a finite group is also a group.