
Fuzzy Description Logics
Lecture Notes, TU Dresden

Rafael Peñaloza Nyssen

WS 2011/2012

Contents

1 Description Logics 3
1.1 ALC . 3
1.2 EL . 6

2 Gödel Description Logics 8
2.1 Motivation . 8
2.2 Gödel Semantics . 8
2.3 Reasoning in Gödel EL 10
2.4 Reasoning in Gödel ALC 15

3 Fuzzy Description Logics with General t-norms 22
3.1 Triangular Norms . 22
3.2 ⊗-ALC . 27
3.3 Undecidability of L-ALC 30

4 Finite Lattice Semantics 38
4.1 Residuated Lattices . 38
4.2 Looping Tree Automata 41
4.3 Deciding Satisfiability 42

2

1 Description Logics

Description Logics (DLs) are a family of knowledge representation for-
malisms that have formal and well-understood semantics. There are
several members of this family (that is, several description logics), with
different expressiveness and complexity properties. These are distin-
guished by the type of constructors that they allow.

In DL, knowledge is represented using concepts (which correspond to
unary relations) such as Heroe or Strong and roles (binary relations) like
hasSidekick. Concepts can be combined with the help of constructors
to obtain more complex expressions. For example, one can express the
class of all heroes that have a strong sidekick as:

Heroe u ∃hasSidekick.Strong.

Axioms are then used to impose restrictions in the concepts, and
include some individuals as well. For example, we can state that Batman
is a superheroe

Superheroe(batman)

and that heroes only have heroic sidekicks

Heroe v ∀hasSidekick.Heroe.

We will now formally introduce the “basic” DL ALC, and its sublogic
EL.

1.1 ALC
ALC is the smallest propositionally closed DL. In it, concepts are built
using the constructors negation (¬), conjunction (u), disjunction (t),
existential- (∃) and value restrictions (∀).

3

Formally, consider the three mutually disjoint sets NC, NR and NI

of concept-, role-, and individual-names, respectively. Then, (complex)
concept descriptions are built from these sets inductively, as follows:

• every concept name A ∈ NC is a concept description;

• > and ⊥ are concept descriptions

• if C,D are concept descriptions and r ∈ NR, then

¬C, C uD, C tD, ∃r.C, ∀r.C

are all concept descriptions.

The semantics of ALC is based on interpretations. Intuitively, an
interpretation is a function that assigns to every concept, a set of indi-
viduals from a given interpretation domain (that is, those individuals
that satisfy the concept).

Formally, an interpretation is a pair I = (∆I , ·I), where ∆I is a
non-empty domain and ·I is a function that assigns:

• to every concept name A ∈ NC a set AI ⊆ ∆I ,

• to every role name r ∈ NR a set of pairs rI ⊆ ∆I ×∆I , and

• to every individual name a ∈ NI an element aI ∈ ∆I .

This function is extended to concept descriptions as follows:

• >I = ∆I , ⊥I = ∅,

• (¬C)I = ∆I \ CI ,

• (C uD)I = CI ∩DI ,

• (C tD)I = CI ∪DI ,

• (∃r.C)I = {x ∈ ∆I | ∃y ∈ ∆I .(x, y) ∈ rI ∧ y ∈ CI},

• (∀r.C)I = {x ∈ ∆I | ∀y ∈ ∆I .(x, y) ∈ rI ⇒ y ∈ CI},

4

For example, consider the interpretation described by the following
figure.

[Figure hand-drawn]
It then follows that

(∀hasSidekick.Heroe)I = {batman, robin, harleyquinn}

and
(Heroe u ∃hasSidekick.>)I = {batman}.

We consider two kinds of axioms: assertional axioms of the form
C(a) where C is a concept description and a ∈ NI, and general concept
inclusion axioms (GCIs) of the form C v D, where C,D are two concept
descriptions.

An ABox is a set of assertional axioms, a TBox is a set of GCIs, and
an ontology is the union of an ABox and a TBox.

We will sometimes use the expression C ≡ D to express the two GCIs
C v D and D v C.

Axioms are used to restrict the set of interpretations that we are
interested in. An interpretation I satisfies the assertional axiom C(a)
if aI ∈ CI ; it satisfies the GCI C v D if CI ⊆ DI . We say that I is a
model of the ontology O if it satisfies all the axioms in O.

For example, the interpretation in the previous figure satisfies the
GCI

Heroe v ∀hasSidekick.Heroe
but not the axiom only heroes can have sidekicks

∃hasSidekick.> v Heroe.

The knowledge of a representation domain is stored in an ontology
(hence, it is also called a knowledge base). Reasoning is then restricted
to consider only models of this ontology.

Two of the main reasoning tasks are ontology consistency (deciding
whether an ontology has a model) and concept subsumption (deciding
whether a concept is a subconcept of another one in every model of the
ontology). In reality for this last reasoning problem, only the TBox part
of the ontology is relevant.

5

Formally, we say that a concept C is subsumed by a concept D w.r.t.
a TBox T (in symbols C vT D) if CI ⊆ DI for every model I of T .

It is a simple exercise to show that subsumption can be reduced to
ontology consistency in the following way: C vT D iff T ∪{C u¬D(a)}
is inconsistent.

Complexity-wise, this simple logic is already (relatively) hard: sub-
sumption and ontology consistency are indeed ExpTime-complete prob-
lems. In order to regain tractability, one can consider the sub-boolean
DL EL.

1.2 EL
EL is a sublogic of ALC that allows only for the constructors >, u and
∃. For example, we can express that only heroes have sidekicks

∃hasSidekick.> v Heroe

but not that every sidekick is a heroe. In fact, this logic is not capable
of expressing negations. Thus, every ontology expressed in EL is neces-
sarily consistent. For this reason, the main decision problem considered
in this setting is concept subsumption.
EL concept subsumption is decided using a completion algorithm that

runs in polynomial time. This algorithm assumes that the TBox is in
normal form; that is, that all the axioms are of the form

A1 uA2 v B

A1 v ∃r.B or

∃r.A1 v B

where A1, A2, B ∈ NC ∪ {>}.
Every EL TBox can be equivalently transformed to normal form using

the following normalization rules:

NF1 C u D̂ v E D̂ v A,C uA v E,

NF2 ∃r.D̂ v E D̂ v A, ∃r.A v E,

NF3 B v ∃r.Ĉ A v Ĉ, B v ∃r.A,

6

NF4 Ĉ v D̂ Ĉ v A,A v D̂,

NF5 C v D u E C v D,C v E,

where Ĉ, D̂ /∈ NC ∪ {>} and A is a new concept name.
Given a TBox in normal form, the algorithm builds a completion

graph as follows:

• for every concept A ∈ NC ∪ {>}, the set S(A) is initialized to
{A,>}, (subsumers of A)

• for every pair of concepts A,B ∈ NC ∪ {>}, the set R(A,B) is
initialized to ∅, (roles where B is successor of A),

• these sets are then extended using the following completion rules,
until no rule is applicable:

R1 if A1 uA2 v B ∈ T and A1, A2 ∈ S(A), then add B to S(A),

R2 if A1 v ∃r.B ∈ T and A1 ∈ S(A), then add r to R(A,B), and

R3 if ∃r.A1 v B ∈ T , A1 ∈ S(A2), and r ∈ R(A,A2), then add
B to S(A).

Intuitively, S(A) stores the set of all subsumers w.r.t. T of A, while
R(A,B) stores all the roles r such that A vT ∃r.B. The idea behind
the rules is best explained through the following diagram [hand-drawn
diagram].

This algorithm terminates after polynomially many rule applications,
and is such that, for every two concept names A,B, A vT B iff B ∈
S(A). Thus, this algorithm decides not only one subsumption relation,
but all subsumptions between concept names. In other words, it is
capable of classifying the whole TBox.

7

2 Gödel Description Logics

2.1 Motivation

Recall that one of the main goals of DL is to represent knowledge from
a domain. A big challenge in knowledge representation is how to deal
with imprecise and vague concepts that appear in almost any real-life
domain. One such concept is “Strong”. It is not possible to give a
precise, clear-cut definition of what “Strong” is. However, we still know
that, for example, Superman is strong. How about Batman, or Joker?

A solution to this problem is to use intermediate degrees of member-
ship to a concept, expressed by numbers in the unit interval [0, 1]. The
intuition is that the degree expresses how much an individual actually
belongs to a concept. Hence, we can say that “Superman is strong with
degree 1”, while “Joker is strong with degree 0.5”.

Obviously, the interpretation of the different concept constructors
must also be adapted accordingly.

2.2 Gödel Semantics

The Gödel semantics for DLs are based on interpretations for the concept-
and role-names, as with the classical semantics introduced in the previ-
ous chapter. The difference is the range of the interpretation function.

For classical DLs, we defined an interpretation as a pair I = (∆I , ·I)
where ·I maps every concept name A to a set AI ⊆ ∆I and every
role name r to a binary relation rI ⊆ ∆I × ∆I . We can view these
two sets as their characteristic functions, thus, AI : ∆I → {0, 1} and
rI : ∆I × ∆I → {0, 1}, where 0 expresses that the element does not
belong to the set, and 1 that it belongs.

We extend this notion to the degrees of membership in the interval
[0, 1] in the natural way.

8

Definition 2.1 (fuzzy semantics). A fuzzy interpretation is a pair I =
(∆I , ·I) where ∆I is a non-empty set, called the domain and ·I is a
function mapping:

• every concept name A ∈ NC to a function AI : ∆I → [0, 1], and

• every role name r ∈ NR to a function rI : ∆I ×∆I → [0, 1].

4

What characterizes the Gödel semantics is how this interpretation
function is extended to complex concepts. Consider first the conjunction
constructor u. In classical DL, an element belongs to (C u D)I iff it
belongs to CI and to DI . Seeing I as a characteristic function, it follows
that

(C uD)I(x) = min(CI(x), DI(x)).

Thus, a natural way to interpret conjunction is through the operator
min. Likewise, disjunction can be interpreted using max. The interpre-
tation of negation and implication require a more complex intuition that
should become clear in the next chapter. The negation is interpreted
through the Gödel negation

	x =

{
0 if x > 0

1 otherwise,

and implication through the residuum

x⇒ y =

{
1 if x ≤ y
y otherwise.

In summary, the interpretation function is extended to concept descrip-
tions as follows. For every x ∈ ∆I :

• >I(x) = 1, ⊥I(x) = 0,

• (¬C)I(x) = 	CI(x),

• (C uD)I(x) = min(CI(x), DI(x)),

• (C tD)I(x) = max(CI(x), DI(x)),

9

• (∃r.C)I(x) = supy∈∆I{min(rI(x, y), CI(y))},

• (∀r.C)I(x) = infy∈∆I{rI(x, y)⇒ CI(y)}.
We also extend the notion of membership degree to the axioms in

ontologies. In this case, we do not ask axioms to hold always (with a
degree 1) but rather give a lower bound of the degree that they must
satisfy.

Definition 2.2 (fuzzy ontology). A (labeled) assertion is of the form
〈C(a), q〉 or 〈r(a, b), q〉, where C is a concept, r a role name, a, b ∈ NI,
and q ∈ [0, 1].

A (labeled) GCI is of the form 〈C v D, q〉, where C,D are two con-
cepts and q ∈ [0, 1].

A fuzzy ABox is a finite set of assertions, a fuzzy TBox is a finite set
of GCIs, and a fuzzy ontology is the union of an ABox and a TBox. 4

For example, the axiom 〈Strong(batman), 0.9〉 expresses that Batman
has a “degree of strength” of at least 0.9. We can also relate the degrees
of strength of different individuals, for instance through the axiom

〈Heroe u Strong v ∀hasNemesis.Strong, 0.8〉 .
According to this axiom, the stronger a hero is, the stronger his enemies
must be.

Intuitively, 〈α, q〉 expresses that the axiom α holds with a degree at
least q. Formally, an interpretation I satisfies the axiom 〈C(a), q〉 if
CI(aI) ≥ q; it satisfies 〈r(a, b), q〉 if rI(aI , bI) ≥ q; and it satisfies the
GCI 〈C v D, q〉 if CI(x) ⇒ DI(x) ≥ q for every x ∈ ∆I . I is a model
of an ontology O if it satisfies all the axioms in O.

2.3 Reasoning in Gödel EL
As in the crisp case, the interesting reasoning task in Gödel EL is con-
cept subsumption, but in this case, the degree with which the subsump-
tion holds is also relevant. To be precise, given two concepts C,D and
q ∈ [0, 1], we say that C is subsumed to a degree q by D w.r.t. a TBox
T (denoted as 〈C vT D, q〉) if for every model I of T it holds that

inf
x∈∆I

(CI(x)⇒ DI(x)) ≥ q.

10

Moreover, it is interesting the greatest possible degree to which a sub-
sumption holds; that is a value q ∈ [0, 1] such that 〈C vT D, q〉 and
for every q′ > q 〈C vT D, q′〉 does not hold. This is called the best
subsumption degree.

We will show that the completion algorithm sketched in the previous
chapter can be adapted to classify the TBox in the sense that the best
subsumption degree of every pair of concept names A,B is computed.

The completion algorithm assumes that all axioms are in normal
form; that is, that they are of the shape:

〈A1 uA2 v B, q〉
〈A1 v ∃r.B, q〉 or

〈∃r.A1 v B, q〉

where A1, A2, B ∈ NC ∪ {>}, and q ∈ [0, 1].
Consider the normalization rules

NF1
〈
C u D̂ v E, q

〉

〈
D̂ v A, q

〉
, 〈C uA v E, q〉,

NF2
〈
∃r.D̂ v E, q

〉

〈
D̂ v A, q

〉
, 〈∃r.A v E, q〉,

NF3
〈
B v ∃r.Ĉ, q

〉

〈
A v Ĉ, q

〉
, 〈B v ∃r.A, q〉,

NF4
〈
Ĉ v D̂, q

〉

〈
Ĉ v A, q

〉
,
〈
A v D̂, q

〉
,

NF5 〈C v D u E, q〉 〈C v D, q〉 , 〈C v E, q〉,

where Ĉ, D̂ /∈ NC ∪ {>}, A is a new concept name, and q ∈ [0, 1].

Theorem 2.3. For any EL TBox T , the normalization rules produce
in polynomial time a TBox T ′ in normal form such that, for every
A,B ∈ {P | P is a concept name in T } ∪ {>} and every q ∈ [0, 1] it
holds that

〈A vT B, q〉 iff 〈A vT ′ B, q〉 .

Proof. [Exercise!–identical to crisp version]

11

The algorithm builds a generalization of a completion graph, where
the elements have also an associated degree. More precisely, we will
construct

• for every concept A ∈ NC ∪ {>} appearing in the TBox, a subset
S(A) of NC ∪ {>} × [0, 1], and

• for every pair of concepts A,B ∈ NC ∪ {>} a subset of NR ∪ [0, 1].

The intuition is again that these sets store the known subsumption
relations between concepts in the sense that (B, q) ∈ S(A) implies
〈A vT B, q〉, and (r, q) ∈ R(A,B) implies 〈A vT ∃r.B, q〉.

The algorithm initializes these sets by including only the obvious
subsumption relations; that is, initially we have

• S(A) = {(A, 1), (>, 1)},

• R(A,B) = ∅,

for all A,B ∈ NC ∪ {>}.
The sets are then extended using the following three rules, until no

rule is applicable anymore.

R1 if 〈A1 uA2 v B, q〉 ∈ T , (A1, q1), (A2, q2) ∈ S(A), p = min(q, q1, q2),
and there is no p′ ≥ p with (B, p′) ∈ S(A), then add (B, p) to
S(A),

R2 if 〈A1 v ∃r.B, q〉 ∈ T , (A1, q1) ∈ S(A), p = min(q, q1), and there is
no p′ ≥ p with (r, p′) ∈ R(A,B), then add (r, p) to R(A,B),

R3 if 〈∃r.A1 v B, q〉 ∈ T , (A1, q1) ∈ S(A2), (r, q2) ∈ R(A,A2), p =
min(q, q1, q2), and there is no p′ ≥ p with (B, p′) ∈ S(A), then
add B to S(A).

Notice that we can have several pairs (B, q1), (B, q2), . . . in the same
completion set. Additionally, the resulting sets depend on the order in
which the rules were applied. For example, consider the TBox T with
the axioms

〈A v B, 1〉 〈B v C, 0.9〉 〈A v C, 1〉 .

12

If we apply the rules in this order, we will obtain

S(A) = {(A, 1), (>, 1), (B, 1), (C, 0.9), (C, 1)}.

However, if the third axiom is used first, the resulting set is

S(A) = {(A, 1), (>, 1), (B, 1), (C, 1)}.

The completion rules maintain the intuition described before, of the
completion sets storing the explicit subsumption relations between con-
cepts.

Lemma 2.4. The completion algorithm preserves the following invari-
ants:

• (B, q) ∈ S(A) implies 〈A vT B, q〉,

• (r, q) ∈ R(A,B) implies 〈A vT ∃r.B, q〉.

Proof. The initialization obviously satisfies the invariants, hence we
need only to show that every rule application preserves them. Con-
sider the third rule.

From the invariants, we know that if (A1, q1) ∈ S(A2), then it holds
that 〈A2 vT A1, q1〉. We show that this implies that

〈∃r.A2 vT ∃r.A1, q1〉

also holds. By definition, we know that for all α, β ∈ [0, 1], α ⇒
β ≥ β. It thus suffices to prove that for every model I of T and
x ∈ ∆I , (∃r.A1)I(x) ≥ q1.

(∃r.A1)I(x) = sup
y∈∆I

min(rI(x, y), AI1 (y))

≥ sup
y∈∆I ,rI(x,y)>AI1 (y),AI2 (y)>AI1 (y)

AI1 (y)

≥ q1

because 〈A2 vT A1, q1〉 entails that AI1 (x) ≥ q1 whenever AI2 (x) >
AI1 (x).

From the second invariant, we have also that 〈A vT ∃r.A2, q2〉 holds.
Thus, for every model I of T and every x ∈ ∆I we have that AI(x)⇒

13

(∃r.A2)I(x) ≥ q2 and (∃r.A2)I(x) ⇒ (∃r.A1)I(x) ≥ q1, which means
that AI(x)⇒ (∃r.A1)I(x) ≥ min(q1, q2) [Exercise on transitivity]

Using again the same argument with the axiom 〈∃r.A1 v B, q〉, we
obtain that AI(x)⇒ BI(x) ≥ min(q, q1, q2) and hence 〈A v B, p〉 holds.

The other two rules can be treated in a similar way [Exercise?]

When the algorithm terminates, then all the possible subsumption
relations between concept names have been generated.

Lemma 2.5. If no rule is applicable, then 〈A0 vT B0, q〉 implies that
there is some q′ ≥ q such that (B0, q

′) ∈ S(A0).

Proof. Suppose that for every q′ ≥ q (B0, q
′) /∈ S(A0). We will construct

a model of T that violates the subsumption relation, thus showing that
〈A0 6vT B0, q〉. This model is based on the sets S and R produced by
the algorithm.

• ∆I := NCT ∪ {>}, (all concept names in T , but seen as nodes)

• BI(A) := max{q | (B, q) ∈ S(A)},

• rI(A,B) := max{q | (r, q) ∈ R(A,B)}.

Since (A0, 1) ∈ S(A0), we have that AI0 (A0) = 1, and by assumption,
(B0, q

′) /∈ S(A0) for every q′ ≥ q, hence BI0 (A0) < q. This means
that AI0 (A0) ⇒ BI0 (A0) < q, and thus this interpretation violates the
subsumption relation.

It only remains to show that I is indeed a model of T . Take a GCI
from T ; we have three cases:

-〈A1 u A2 v B, p〉 ∈ T
We need to show that, for every A ∈ ∆I , (A1 u A2)I(A) ⇒ BI(A) ≥
p. Let (A1)I(A) = p1 and (A2)I(A) = p2. Then (A1, p1) ∈ S(A),
(A2, p2) ∈ S(A), and (A1 uA2)I(A) = min(p1, p2).

Since R1 is not applicable, we have that there is a p′ ≥ min(p, p1, p2)
such that (B, p′) ∈ S(A) and thus, BI(A) ≥ p′. If p′ ≥ min(p1, p2),
then (A1uA2)I(A)⇒ BI(A) = 1 ≥ p. Otherwise, it follows that p′ ≥ p
and thus (A1 uA2)I(A)⇒ BI(A) = BI(A) ≥ p′ ≥ p.

14

-〈A1 v ∃r.B, p〉 ∈ T
Let (A1)I(A) = p1; then (A1, p1) ∈ S(A). Non applicability of R2
yields the existence of p′ ≥ min(p, p1) such that (r, p′) ∈ R(A,B). Thus
rI(A,B) ≥ p′ and since BI(B) = 1 we have that (∃r.B)I(A) ≥ p′. If
p′ ≥ p1, then AI1 (A) ⇒ (∃r.B)I(A) = 1 ≥ p; otherwise, p′ ≥ p and
hence AI1 (A)⇒ (∃r.B)I(A) ≥ p′ ≥ p.

-〈∃r.A1 v B, p〉 ∈ T
Let (∃r.A1)I(A) = p. Since ∆I is finite (we consider only the concept
names appearing in T), we have that

p = sup
y∈∆I

min(r(A, y), A1(y)) = max
y∈∆I

min(r(A, y), A1(y))

and thus, there exist B′, p1, p2 such that rI(A,B′) = p1, A
I
1 (B′) =

p2, and p = min(p1, p2). This implies that (r, p1) ∈ R(A,B′) and
(A1, p2) ∈ S(B′). Since R3 is not applicable, we have that there is
a q ≥ min(p1, p2) such that (B, q) ∈ S(A); that is, BI(A) = q ≥ p.

A simple consequence from these lemmas is that subsumption in
Gödel-EL w.r.t. TBoxes is decidable. One can in fact go a step fur-
ther and prove that the completion algorithm works in polynomial time
[Exercise?]

The pairs (A, p) used by the completion algorithm can be seen as crisp
concepts that express all the individuals that belong to the concept A
to a degree at least p. In this way, the completion graph is built using
only crisp concepts, and so reasoning is reduced to the crisp case. We
take this a step further and show that reasoning in Gödel ALC can be
reduced to reasoning in crisp ALC by producing the bounding concepts
and adapting the ontology accordingly.

2.4 Reasoning in Gödel ALC
Rather than developing a new reasoning algorithm for Gödel ALC, we
will show how to transform a fuzzy ontology into a crisp one that pre-
serves consistency. In this way, we can decide consistency of the original

15

ontology, simply by using the known (exponential time) algorithms for
crisp ALC. For this reduction to work, we need to consider a special
kind of models, called witnessed models.

Definition 2.6 (witnessed models). An interpretation I is called wit-
nessed if for every concept C, role name r and x ∈ ∆I there are
y, z ∈ ∆I such that

• (∃r.C)I(x) = min(rI(x, y), CI(y)) and

• (∀r.C)I(x) = rI(x, y)⇒ CI(y)

We say that an ontology is witnessed consistent if it has a witnessed
model. 4

The intuition behind witnessed interpretations is that every supre-
mum and infimum defined by a quantifier has to be reached (or wit-
nessed) by an element of the domain. Obviously, every witnessed model
is also a model, and hence witnessed consistency implies consistency of
an ontology. However, the converse does not hold.

Example 2.7. Consider the ontology O having only the assertion

〈(¬∀r.A) u (¬∃r.¬A)(a), 1〉 .

We show that O has a model but no witnessed model.
Consider the interpretation I = (∆I , ·I) given by:

• ∆I = N (the set of natural numbers),

• for n ∈ N, AI(n) = 1
n+1 ,

• rI(m,n) = 1 iff m = 0, and

• aI = 0.

It then follows that

(∀r.A)I(aI) = inf
n∈N

(rI(0, n)⇒ AI(n)) = inf
n∈N

1

n+ 1
= 0

and

(∃r.¬A)I(aI) = sup
n∈N

min(rI(0, n), (¬A)I(n)) = sup
n∈N

0 = 0.

16

Thus, ((¬∀r.A) u (¬∃r.¬A))I(aI) = 1 and I is a model of O.
Suppose now that O has a witnessed model J . Then, there must

be a witness for (∀r.A)(aJ); that is, there is an y ∈ ∆J such that
rJ (aJ , y) ⇒ AJ (y) = 0. This means that rJ (aJ , y) > 0 and AJ (y) =
0. But then,

min(rJ (aJ , y), (¬A)J (y)) = rJ (aJ , y) > 0

but then (∃r.¬A)J (aJ) > 0, which means that

((¬∀r.A) u (¬∃r.¬A))J (aJ) = 0

violating the only axiom in O.

If we restrict reasoning to witnessed models, then we can reduce the
problem to the crisp case.

Just as we have general concept inclusion axioms C v D in crisp DLs,
one can also think of role inclusion axioms of the form r v s, where
r, s are two role names. An RBox is a finite set of role inclusions. The
semantics of these axioms is the obvious one: a crisp interpretation I
satisfies the role inclusion r v s if rI ⊆ sI . It satisfies the RBox R if it
satisfies all axioms in R.

It is known that extending (crisp) ALC with role inclusions does not
increase the complexity of reasoning; that is, consistency of an ALC
ontology extended with an RBox can be decided in exponential time
too. We will use role inclusion axioms to simplify our reduction from
fuzzy to crisp ontologies.

Let now O be a fuzzy ontology. We define the set VO of membership
degrees appearing in O as

VO = {q ∈ [0, 1] | 〈α, q〉 ∈ O} ∪ {0, 1}.

Notice that, since O is finite, VO must also be finite. W.l.o.g., we assume
that VO = {q0, . . . , qn} with qi < qi+1 for every 0 ≤ i < n = |VO|. (That
is, that VO is linearly ordered). It immediately follows that q0 = 0 and
qn = 1.

Notice that this set is closed under the interpretation of the connec-
tives: Gödel negation, minimum and residuum. In other words, if we

17

apply any of these operators to elements of VO, we obtain again an el-
ement of VO. We will show that these are all the membership degrees
that are relevant when deciding ontology consistency.

We will create n concept names Aqi , i ≥ 1 for every concept name A
in O. Intuitively, Aq represents the (crisp) set of all individuals that
belong to A with a degree greater or equal to q; that is, it defines a cut
on the fuzzy interpretation of A. Similarly, we introduce role names rq
for every q ∈ VO.

Notice that we do not create the concept name A0 nor the role name
r0, since these will be interpreted as tautological concepts and roles.

Obviously, given our interpretation of these concepts, if an individual
belongs to the concept Aqi+1 for some i, 1 ≤ i < n, then it must also be-
long to Aqi . This restriction needs to be enforced for every membership
degree in VO and every concept name appearing in O. For that reason,
we introduce the TBox

TO = {Aqi+1 v Aqi | 1 ≤ i < n}.

A similar condition must be satisfied by the role names. We enforce
this through the RBox

RO = {rqi+1 v rqi | 1 ≤ i < n}.

We define the translation ρ of complex concept expressions (C, q) for
q ∈ VO \ {0} as follows:

• ρ(A, q) = Aq,

• ρ(>, q) = >, ρ(⊥, q) = ⊥,

• ρ(¬C, q) = ¬ρ(C, q1), (C has to be interpreted as 0)

• ρ(C uD, q) = ρ(C, q) u ρ(D, q),

• ρ(C tD, q) = ρ(C, q) t ρ(D, q),

• ρ(∃r.C, q) = ∃rq.ρ(C, q),

• ρ(∀r.C, q) = u
0<p≤q

∀rp.ρ(C, p).

18

Example 2.8. Let VO = {0, 0.5, 0.75, 1}. We then have

ρ(∀r.¬A, 0.75) = ∀r0.5.ρ(¬A, 0.5) u ∀r0.75.ρ(¬A, 0.75)

= ∀r0.5.A0.5 u ∀r0.75.¬ρ(A, 0.5)

= ∀r0.5.A0.5 u ∀r0.75.¬A0.5.

The idea is that ρ(C, q) expresses all those individuals that belong to
C with a degree at least q. More formally, if we have a fuzzy interpre-
tation I, we can transform it into a crisp interpretation J that satisfies
this property, simply by defining, for every concept name A

AJq = {x ∈ ∆I | AI(x) ≥ q}

and for every role name r

rJq = {(x, y) ∈ ∆I ×∆I | rI(x, y) ≥ q}.

Notice that J satisfies all the axioms in TO ∪RO.

Lemma 2.9. Let I be a witnessed fuzzy interpretation and J the crisp
interpretation constructed as above. Then, for every concept C and
q ∈ VO, it holds that (ρ(C, q))J = {x ∈ ∆I | CI(x) ≥ q}.

Proof. The proof is by induction on the structure of the concept C.
If C is a concept name A, then by definition (ρ(A, q))J = {x ∈ ∆I |
AI(x) ≥ q}.

Let now C be of the form ¬D for some D satisfying the property
and q > 0 ∈ VO. Since we are using the Gödel negation, which always
evaluates to either 0 or 1, we have that

{x ∈ ∆I | (¬D)I(x) ≥ q} = {x ∈ ∆I | (¬D)I(x) = 1}
= {x ∈ ∆I | DI(x) = 0}.

On the other hand,

ρ(¬D, q)J = ¬ρ(D, q1) = ∆I \ {x ∈ ∆I | DI(x) > 0}.

For C of the form ∀r.D, let x be such that (∀r.D)I(x) ≥ q, and
p, 0 < p ≤ q. For every y ∈ ∆I if (x, y) ∈ rJp , then rI(x, y) ≥ p

19

and hence DI(y) ≥ p; by induction, it follows that y ∈ ρ(D, p). This
means that x ∈ ∀rp.ρ(D, p). As this is true for every p, 0 < p ≤ q,
x ∈ ρ(∀r.D, q). Conversely, if (∀r.D)I(x) < q, then there is a y ∈
∆I such that rI(x, y) ⇒ DI(y) < q. In particular, this means that
rI(x, y) > DI(y) and DI(y) < q. Thus, there is a p ≤ q such that
rI(x, y) ≥ p > DI(y); that is, (x, y) ∈ rJp but y /∈ ρ(D, p)J , hence
x /∈ ∀rp.ρ(D, p), and in particular x /∈ ρ(∀r.D, q).

The proofs of the other constructors follow the same lines.

Conversely, if we have a crisp model J of TO ∪RO, we can construct
a fuzzy interpretation I that sets, for every concept name A and role
name r

AI(x) = max{q ∈ VO | x ∈ AJq } (0 if in none)

rI(x, y) = max{q ∈ VO | (x, y) ∈ rJq }.
Notice that this interpretation is witnessed.

Lemma 2.10. Let J be a crisp model of TO ∪ RO and I the fuzzy
interpretation constructed as above. Then, for every concept C and
q ∈ VO, it holds that (ρ(C, q))J = {x ∈ ∆I | CI(x) ≥ q}.
Proof. The proof is by induction, following similar ideas as Lemma 2.9.
Students should try it by themselves.

These two lemmas together express that the translation from fuzzy
to crisp concepts preservers the properties of every interpretation, and
adds no new ones. We will use this to show that the ontology we will
now construct has a model if and only if the original fuzzy ontology has
a witnessed model.

Now, we need only translate the axioms. We define the translation
κ, transforming fuzzy axioms into sets of crisp axioms, as follows:

• κ(〈C(a), q〉) = {ρ(C, q)(a)},

• κ(〈r(a, b), q〉) = {rq(a, b)},

• κ(〈C v D, q〉) = {ρ(C, p) v ρ(D, p) | 0 < p ≤ q}.
We extend this translation to fuzzy ontologies as follows

κ(O) := ∪α∈Oκ(α) ∪ TO ∪RO.

20

Theorem 2.11. A fuzzy ontology O is witnessed consistent iff the crisp
ontology κ(O) is consistent.

Proof. Suppose O is consistent. Then it has a fuzzy model I. Consider
the crisp interpretation J constructed as for Lemma 2.9 and let aJ = aI

for every concept name a. J is a model of TO ∪RO; hence, it remains
only to show that it satisfies all the axioms in κ(α) for every α ∈ O.

For an assertion of the form 〈C(a), q〉 ∈ O, since I is a model of O,
we know that CI(aI) ≥ q, and thus, aJ = aI ∈ ρ(C, q)J (Lemma 2.9);
thus J satisfies κ(〈C(a), q〉). The proof for role assertions is analogous.

For an axiom 〈C v D, q〉 ∈ O, let p, 0 < p ≤ q and x ∈ ρ(C, p)J .
This means that CI(x) ≥ p (Lemma 2.9) and hence, since I is a model
of O, it follows that DI(x) ≥ p. But then, x ∈ ρ(D, p)J (Lemma 2.9).

Thus, J is a model of κ(O), and κ(O) is consistent.
For the converse, that is, for proving that if κ(O) is consistent, then
O is also consistent, the argument is analogous, using the construction
and result from Lemma 2.10.

This shows that consistency of fuzzy ALC ontologies under Gödel
semantics is decidable. Moreover, it can be decided in time exponential
on the size of κ(O). We analyse now how big this crisp ontology is.

Notice first that the number of axioms in κ(O) is bounded by |VO| ·
(|O|+ 2). The concepts appearing in each axiom in κ(O) are transfor-
mations from the concepts in O. In the worst case, we have a concept
C that is a nesting of value restrictions with a very high degree. In that
case, the size of ρ(C, 1) is bounded by |VO| ·m where m is the maximal
nesting of value restrictions in a concept. But both |VO| and m are
bounded linearly by the size of O, and hence in total, the size of κ(O) is
bounded cubically by the size of O. Since deciding consistency of κ(O)
is exponential in the size of κ(O), this yields also an exponential upper
bound for deciding consistency of O, which is optimal.

Question for the careful reader: where were the properties of wit-
nessed models used?

21

3 Fuzzy Description Logics with
General t-norms

Gödel semantics are a simple generalization of the crisp semantics to
the interval [0, 1]. As we have seen, this extension preserves most of
the properties of crisp DLs; most notably, the complexity of reasoning
with it. Moreover, the logic produced is “simple” in the sense that it
is not hard to adapt existing reasoning methods for crisp DLs to the
Gödel semantics. Two methods that we presented were: building a new
algorithm based on the ideas for crisp reasoning (EL), and reducing
fuzzy reasoning to the crisp case (ALC).

In reality, the operators that define the Gödel semantics are just a
special case of a family of fuzzy operators known as triangular norms
(t-norms). Each member of this family defines a semantics for fuzzy
DLs.

3.1 Triangular Norms

Before we define t-norms in detail, we motivate our choices by describ-
ing some properties that the interpretation of the different constructors
should satisfy. First, since we want a logic in which the values of com-
plex concepts at a given individual x depend only on the values of the
concept names and role names associated to x, we require every con-
structor to be truth functional.

Formally, an n-ary connective c is truth functional if there is a func-
tion fc : [0, 1]n → [0, 1] such that, for any n concepts C1, . . . , Cn, the
membership degree of the formula c(C1, . . . , Cn) is obtained by applying
fc to the membership degrees of C1, . . . , Cn. This function fc is called
the interpretation function of c.

For example, consider the conjunction constructor u. The semantics
of fuzzy DL should be such that (C u D)I(x) = fu(CI(x), DI(x)) for

22

every interpretation I and x ∈ ∆I .
The second condition is that the interpretation function of every con-

structor generalizes the crisp semantics of DL. This means that if the
subconcepts are interpreted to the values 0 or 1, then the interpreta-
tion function should behave as the crisp constructor. Hence, for exam-
ple, if CI(x) = 1 = DI(x), then (C u D)I(x) = 1 or, in general, if
CI(x), DI(x) ∈ {0, 1}, then (C u D)I(x) = CI(x) ∧ DI(x), where ∧
denotes the classical conjunction operator.

It is easy to see that the Gödel semantics satisfy these two properties
for all the connectives in ALC. We will show that there are many other
functions that also satisfy it.

We first give the general description of the interpretation functions
for conjunction: that they describe a continuous t-norm. Later we will
show that all the other connectives can be constructed from conjunction
in a unique and adequate way.

Definition 3.1. A t-norm is an associative and commutative binary
operator ⊗ on [0, 1] that is non-decreasing in both arguments and has
1 as its identity element.

In other words, ⊗ must satisfy the following conditions:

1. if x1 ≤ x2 and y1 ≤ y2, then x1 ⊗ y1 ≤ x2 ⊗ y2 (non-decreasing),
and

2. 1⊗ x = x for all x ∈ [0, 1] (unit)

The t-norm ⊗ is called continuous if it is a continuous function (in the
usual analysis sense). 4

The intuition behind the use of t-norms for fuzzy logics is the fol-
lowing. If an element has a high membership degree to a conjunction,
then it must belong to each of the conjuncts with a high degree too
(non-decreasing); additionally, the order of the conjuncts should not in-
fluence the degree (commutativity). The other conditions follow from
generalizing classical conjunction.

Three important t-norms are:

1. Gödel t-norm: x⊗ y = min{x, y},

2. Lukasiewicz t-norm: x⊗ y = max{x+ y − 1, 0},

23

3. Product t-norm: x⊗ y = x · y.

[Exercise: show that they are t-norms]
For every continuous t-norm ⊗, there exists a unique binary operator
⇒ (called the residuum of ⊗) such that for every x, y, z ∈ [0, 1],

z ≤ x⇒ y iff x⊗ z ≤ y.

This operator is defined as x ⇒ y := max{z | x ⊗ z ≤ y}. [Exercise:
prove this]

In this chapter we will consider only continuous t-norms. Thus, in
the following, whenever we say “t-norm” we mean “continuous t-norm”.

Some of the properties of residua, which have been shown to hold
already for the Gödel t-norm, and for the crisp semantics, are the fol-
lowing:

Exercise. Show that for every continuous t-norm ⊗ and its residuum
⇒, and every x, y, z ∈ [0, 1]

1. x ≤ y iff (x⇒ y) = 1,

2. (1⇒ x) = x,

3. x⇒ (y ⇒ z) = (x⊗ y)⇒ z.

Proposition 3.2. The following operators define the residua of the
three main t-norms: for x > y,

1. Lukasiewicz implication: x⇒ y = 1− x+ y

2. Product implication: x⇒ y = y/x (also called Goguen implica-
tion)

3. Gödel implication: x⇒ y = y.

and x⇒ y = 1 if x ≤ y.

[Note: for x ≤ y we know, from the previous exercise, that x⇒ y = 1
always]

Proof. Let 1 ≥ x > y; then

24

1. x ⊗ z ≤ y iff x + z − 1 ≤ y iff z ≤ 1 − x + y; thus 1 − x + y =
max{z | x⊗ z ≤ y}.

2. x⊗ z ≤ y iff x · z ≤ y iff z ≤ y/x.

3. x⊗ z ≤ y iff min{x, z} ≤ y iff z ≤ y.

Notice that the residuum is antimonotonic on the first parameter and
monotonic on the second. In other words, if x ≤ x′, then x⇒ y ≥ x′ ⇒
y and y ⇒ x ≤ y ⇒ x′.

The residuum defines the unary precomplement 	 given by 	(x) :=
x ⇒ 0 for all x ∈ [0, 1]. This operator is used for interpreting the
negation constructor.

The precomplement of the Gödel and product t-norms is the Gödel
negation:

	(x) =

{
1 if x > 0,

0 otherwise,

and for the Lukasiewicz t-norm is the involutive negation 	(x) = 1−x.
Finally, to interpret the disjunction constructor, we use the t-conorm
⊕ defined as: x ⊕ y = 1 − (1 − x) ⊗ (1 − y) for every x, y ∈ [0, 1]; that
is, we define an operator that satisfies the De Morgan rules with the
interpretation of the conjunction ⊗.

The t-conorms of the three main t-norms defined above are the fol-
lowing:

1. Gödel t-conorm: x⊗ y = max{x, y},

2. Lukasiewicz t-conorm: x⊗ y = min{x+ y, 1},

3. Product t-conorm: x⊗ y = x+ y − x · y.

The operators defined by the Lukasiewicz t-norm are a popular choice
in fuzzy logics, since some of the common equivalences hold. [Proof as
exercise? Is very very simple]

Lemma 3.3. If ⊗ is the Lukasiewicz t-norm, then the following equiv-
alences hold for every x, y ∈ [0, 1]:

25

• 	 	 x = x,

• x⇒ y = 	x⊕ y,

• x⊕ y = 	(x⊗	y).

However, these equivalences do not hold for the Gödel nor the product
t-norms. For example, let x = 0.5, y = 0.5. Then

		 x = 	0 = 1 6= 0.5 = x

x⇒ y = 1 6= 0.5 = 0⊕ 0.5 = 	x⊕ y
x⊕ y < 1 = 	0 = 	(x⊗	y).

There exist infinitely many continuous t-norms.
A way to construct new t-norms is to combine previously known ones

using the ordinal sum.

Definition 3.4. Consider a (possibly infinite) sequence of elements

0 = a1 < a2 < · · · < an < an+1 = 1.

and t-norms ⊗1, . . . ,⊗n.
The ordinal sum of (ai,⊗i)1≤i≤n is the binary operator ⊗ defined for

every x, y ∈ [0, 1] as:
–if x, y ∈ [ai, ai+1], then x = ai+(ai+1−ai)x′, y = ai+(ai+1−ai)y′,

for some x′, y′ ∈ [0, 1]. Then,

x⊗ y = ai + (ai+1 − ai)(x′ ⊗i y′)

–if x, y belong to different intervals, then x⊗ y = min(x, y). 4

That is, at each interval, we use a (scaled and relocated) version of a
t-norm. [small drawing of unit interval, cut in pieces]

It is easy to see that the ordinal sum ⊗ of continuous t-norms is itself
a continuous t-norm, and if n > 1, and ⊗i is not the Gödel t-norm for
some i, 1 ≤ i ≤ n, then ⊗ is different from all the t-norms ⊗1, . . . ,⊗n
used in the construction.

26

For example, we can consider the t-norm ⊗ built by putting the
product t-norm in the intervals [0, 0.5], [0.5, 1]. This t-norm is defined
by:

x⊗ y =

2x · y if x, y ∈ [0, 0.5]

2(x− 0.5)(y − 0.5) + 0.5 if x, y ∈ [0.5, 1]

min(x, y) otherwise.

That the converse holds is trivial: every t-norm ⊗ is the ordinal sum
of itself over the whole interval [0, 1] (that is, a2 = 1).

However, it is possible to prove a much stronger results: every con-
tinuous t-norm can be expressed as the ordinal sum of the Lukasiewicz,
product and Gödel t-norms. This is known as the Mostert-Shields The-
orem.

For a t-norm formed as the ordinal sum of t-norms as described above,
the residuum ⇒ is given for every x > y ∈ [0, 1] by:

–if x, y ∈ [ai, ai+1], then x = ai+(ai+1−ai)x′, y = ai+(ai+1−ai)y′,
x, y ∈ [0, 1]. We then set

x⇒ y = ai + (ai+1 − ai)x′ ⇒i y
′

–if x, y belong to different intervals, then x⇒ y = y
where ⇒i represents the residuum of the t-norm ⊗i.

Once again, if x ≤ y, then x⇒ y = 1.
For example, the residuum of the t-norm built from the product t-

norm in the intervals [0, 0.5], [0.5, 1] is:

x⇒ y =

1 if x ≤ y,
y/2x if x, y ∈ [0, 0.5],

(y − 0.5)/(2(x− 0.5)) + 0.5 if x, y ∈ [0.5, 1],

y otherwise

With this, we are ready to define the general semantics for fuzzy ALC.

3.2 ⊗-ALC
Every t-norm ⊗ defines a fuzzy logic ⊗-ALC. The syntax of this logic,
and its axioms, is exactly the same as for Gödel ALC (which is, in fact,

27

an instance of ⊗-ALC, where ⊗ is the Gödel t-norm). The difference
relies on how complex concepts are interpreted, and which kinds of
interpretations define a model.

Definition 3.5 (semantics of ⊗-ALC). A fuzzy interpretation is a pair
I = (∆I , ·I) where ∆I is a non-empty set, called the domain and ·I is
a function mapping:

• every concept name A ∈ NC to a function AI : ∆I → [0, 1], and

• every role name r ∈ NR to a function rI : ∆I ×∆I → [0, 1].

This function is extended to concept descriptions as follows. For every
x ∈ ∆I :

• >I(x) = 1, ⊥I(x) = 0,

• (¬C)I(x) = 	CI(x),

• (C uD)I(x) = CI(x)⊗DI(x),

• (C tD)I(x) = CI(x)⊕DI(x),

• (∃r.C)I(x) = supy∈∆I{rI(x, y)⊗ CI(y)},

• (∀r.C)I(x) = infy∈∆I{rI(x, y)⇒ CI(y)}.

I satisfies the axiom 〈C(a), q〉 if CI(aI) ≥ q; it satisfies 〈r(a, b), q〉 if
rI(aI , bI) ≥ q; and it satisfies the GCI 〈C v D, q〉 if CI(x)⇒ DI(x) ≥
q for every x ∈ ∆I .
I is a model of an ontology O if it satisfies all the axioms in O. O is

consistent if it has a model. 4

It is important to emphasize that the semantics depend on the t-norm
chosen. Consider for example the ABox {〈A(a), 0.1〉 , 〈(¬A)(a), 0.1〉}.
Under the Lukasiewicz t-norm, this ontology is consistent: the interpre-
tation I = ({a}, ·) with AI(a) = 0.9 satisfies both axioms since

(¬A)I(a) = AI(a)⇒ 0 = 1− 0.9 = 0.1

However, if we use the Gödel or product semantics, at least one of A
or ¬A is interpreted as 0 (Gödel negation!), and hence if I satisfies the

28

first axiom, i.e., if AI(a) ≥ 0.1, it must be the case that (¬A)I(a) = 0,
which violates the second axiom.

In general, only a few logical equivalences between constructors can
be guaranteed. In fact, as we have seen before, in general

¬¬C 6≡ C, C t ¬C 6≡ >, ∃r.C 6≡ ¬∀r.(¬C), ¬∀r.C 6≡ ∃r.(¬C),

¬(C tD) 6≡ ¬C u ¬D, ¬(C uD) 6≡ ¬C t ¬D

[Exercise: prove the last two. Hint: you need a “combined” t-norm (not
one of the basic three)– prove that the equivalences hold in the L, prod
and G t-norms!]

Lemma 3.6. For every t-norm ⊗, the following equivalences hold:

• C u ¬C ≡ ⊥,

• ¬∃r.C ≡ ∀r.(¬C).

Proof. • Recall that x ⇒ 0 = max{z | x ⊗ z ≤ 0}, and hence
x⊗ (x⇒ 0) ≤ 0. For an interpretation I and x ∈ ∆I we have

(C u ¬C)I(x) = CI(x)⊗ (CI(x)⇒ 0) = 0.

• For the other equivalence, we have

(∀r.¬C)I(x) = inf
y∈∆I

{rI(x, y)⇒ (CI(y)⇒ 0)}

= inf
y∈∆I

{rI(x, y)⊗ CI(y)⇒ 0}

= sup
y∈∆I

{rI(x, y)⊗ CI(y)} ⇒ 0 = (¬∃r.C)I(x)

Other properties hold for specific t-norms only. As we have seen, in
the Lukasiewicz t-norm, many of the standard equivalences of classical
logic hold, which gives rise to interdefinability of ∃ and ∀, or the law of
excluded middle.

Lemma 3.7. Under the Lukasiewicz semantics, the following equiva-
lences hold:

• C t ¬C ≡ >,

29

• ¬∀r.C ≡ ∃r.(¬C).

Proof. CI(x)⊕ (1− CI(x)) = min{CI(x) + 1− CI(x), 1} = 1.

1− inf
y∈∆I

{rI(x, y)⇒ CI(y)} = sup
y∈∆I

{1− rI(x, y)⇒ CI(y)}

= sup
rI(x,y)>CI(y)

{1− (1− rI(x, y) + CI(y))}

= sup
rI(x,y)>CI(y)

{rI(x, y)− CI(y)}

= sup
rI(x,y)>CI(y)

{rI(x, y)⊗ (¬C)I(y)}.

In the Gödel t-norm, we also have that conjunction and disjunction
are idempotent; that is, C u C ≡ C,C t C ≡ C. This does not hold in
any other continuous t-norm.

We have shown in the previous chapter that if we use the Gödel
t-norm for the semantics, then the complexity of reasoning does not
increase. This unfortunately does not hold for general t-norms. In fact,
we will show that if we choose the Lukasiewicz semantics, then ontology
consistency becomes an undecidable problem.

3.3 Undecidability of L-ALC
We show undecidability of our problem by a reduction from a known
undecidable problem. The problem we choose in this case is the Post
Correspondence Problem.

Definition 3.8. Let (v1, w1), . . . , (vn, wn) be a sequence of pairs of
words from an alphabet Σ. A finite chain of indices i1 . . . ik, k ≥ 1,
where ij ∈ {1, . . . , n} is called a solution if vi1vi2 · · · vik = wi1wi2 · · ·wik .
The Post Correspondence Problem (PCP) consists on deciding whether
there is a solution or not.

For example, consider the pairs (v1, w1) = (a, ab), (v2, w2) = (ba, a).
The chain 12 is a solution to this instance, since v1v2 = aba = w1w2.

On the other hand, the instance formed by the pairs (v1, w1) = (a, b),
(v2, w2) = (b, a) has no solution.

30

Before we present the reduction, we introduce some helpful abbrevi-
ations.

First, since the alphabet Σ is finite, we can assume w.l.o.g. that
Σ = {1, . . . , s} (the first s natural numbers) with s > 1. Under this
assumption, we can see every word in Σ+ as a natural number in base
s+ 1, where 0 never appears in this expression. Using this intuition, we
will represent the empty word ε as the number 0.

For a word u = u1 · · ·um ∈ Σ∗, where ui ∈ Σ for all i, 1 ≤ i ≤ m, ←−u
denotes the word ←−u = umum−1 · · ·u1.

Given a sequence ν = i1 · · · ik ∈ {1, . . . , n}∗, we will denote as vν the
word vi1 · · · vik and wν = wi1 · · ·wik .

Finally, the expression nC abbreviates the n-ary disjunction of the
concept C with itself. Formally, 1C = C and (n+1)C = CtnC. Under
the Lukasiewicz semantics, we have that (nC)I(x) = min{n(CI(x)), 1}
for all I, x ∈ ∆I .

Let now P an instance of the PCP given by (v1, w1), . . . , (vn, wn). We
can visualize P as a tree, with nodes given by each word ν ∈ {1, . . . , n}
and where each node is labeled by the two words vν and wν . [Hand-
drawn tree]

To decide whether P has a solution is equivalent to deciding whether
there is a node in this tree where the two words it is labeled with are
equal; that is, vν = wν .

The idea of the reduction is to create an ontology OP that only ac-
cepts models that “include” this tree (or a representation of it) and
further enforce that vν 6= wν for every node (except the root node). It
then follows that P has a solution iff OP has no models, i.e., is inconsis-
tent. For this reduction we will once again limit reasoning to witnessed
models.

For the reduction, we will encode each word w ∈ Σ∗ as the number
0.←−w ∈ [0, 1] (in base s + 1). For instance, the word 112 is encoded as
0.211 and the empty word is encoded as 0. Since we consider only finite
words, all the encodings are always strictly smaller than 1. We will also
use two designated concept names V and W , whose interpretation at
a node ν ∈ {1, . . . , n}∗ will correspond to the encoding of vν and wν ,
respectively.

We follow an inductive approach to simulate the search tree within
the models of the ontology OP .

31

First, we want to represent the root of the tree. That is, we want an
element δε such that V I(δε) = W I(δε) = 0, which is the encoding of
the empty word. This is ensured by the two assertions

A0
P := {〈(¬V)(a), 1〉 , 〈(¬W)(a), 1〉}.

Obviously, every interpretation satisfying these axioms will set V I(aI) =
0 and likewise for W .

Let now δ ∈ ∆I be a node encoding the words v, w; that is, V I(δ) =
0.←−v and W I(δ) = 0.←−w . We want to ensure that, for every 1 ≤ i ≤ n,
there is a node γ that encodes the words vvi and wwi. Let 1 ≤ i ≤ n
and assume that we have two concept names Vi,Wi with V Ii (δ) = 0.←−vi
and W Ii (δ) = 0.←−wi. We define the TBox

T iP := {〈> v ∃ri.>, 1〉 (3.1)〈
(s+ 1)|vi|V ′i v V, 1

〉
,
〈
V v (s+ 1)|vi|V ′i , 1

〉
(3.2)

〈
∃ri.V v V ′i t Vi, 1

〉
,
〈
V ′i t Vi v ∀ri.V, 1

〉
(3.3)〈

(s+ 1)|wi|W ′i vW, 1
〉
,
〈
W v (s+ 1)|wi|W ′i , 1

〉

〈
∃ri.W vW ′i tWi, 1

〉
,
〈
W ′i tWi v ∀ri.W, 1

〉
}.

The first axiom ensures that (∃ri.>)I(δ) = 1. Since we are dealing
with witnessed models, this means that there exists a γ ∈ ∆I such that
rIi (δ, γ)⊗>I(γ) = 1, and hence rIi (δ, γ) = 1.

The axioms from (3.2) state that ((s + 1)|vi|V ′i)I(δ) = V I(δ) < 1,
hence we have that (s+1)|vi|(V ′Ii (δ)) = 0.←−v , which means that V ′Ii (δ) =
0.0 . . . 0←−v [|vi| zeroes].

From this it follows that (V ′i t Vi)I(δ) = 0.←−vi + 0.0 . . . 0←−v = 0.←−vvi.
We now look at the axioms from (3.3). The first one says that

0.←−vvi = (V ′i t Vi)I(δ) ≥ (∃ri.V)I(δ)

≥ sup
η∈∆I

rIi (δ, η)⊗ V I(η)

≥ rIi (δ, γ)⊗ V I(γ) = V I(γ).

32

From the second, it follows that

0.←−vvi = (V ′i t Vi)I(δ) ≤ (∀ri.V)I(δ)

≤ inf
η∈∆I

rIi (δ, η)⇒ V I(η)

≤ rIi (δ, γ)⇒ V I(γ) = V I(γ).

Thus, together they express that V I(γ) = 0.←−vvi as desired.
Using the same argument, the last four axioms state that W I(γ) =

0.←−−wwi.
Now, recall that this argument depends on having V Ii (δ) = 0.←−vi .

Thus, in order to build the tree inductively, we need to ensure that
this holds at every node of the tree (and likewise for Wi) and for every
i, 1 ≤ i ≤ n. For this reason, we consider additionally the TBox

T 0
P := {〈> v Vi, 0.←−vi 〉 , 〈> v ¬Vi, 1− 0.←−vi 〉

〈> vWi, 0.
←−wi〉 , 〈> v ¬Wi, 1− 0.←−wi〉 | 1 ≤ i ≤ n},

that ensures that Vi and Wi are interpreted as the constants 0.←−vi and
0.←−wi over all the elements of the domain.

We will also consider a bound on the difference between two words,
that will be helpful for deciding whether P has a solution or not. Let
k := max{|u| | u ∈ {vi, wi | 1 ≤ i ≤ n}} be the maximal length of a
word in the instance P.

Notice that for every ν ∈ {1, . . . , n}∗, |vν | ≤ k|ν| and |wν | ≤ k|ν|.
Thus, if vν 6= wν , 0.←−vν and 0.←−wν must differ in one of the first k|ν|
digits.

If ←−vν > ←−wν , then 1 − 0.←−vν + 0.←−wν ≤ 1 − (s + 1)−k|ν| = 0.9 . . . 9 [k|ν|
nines].

If ←−wν >←−vν , then 1− 0.←−wν + 0.←−vν ≤ 1− (s+ 1)−k|ν| = 0.9 . . . 9.
We will use an additional concept name M to keep this bound. For

technical reasons, we will make the bound a little larger, although this
will not make any problem. Thus, we define the ontology

O0 := {〈M(a), 0.9〉 , 〈¬M(a), 0.1〉〈
(s+ 1)kM ′ v ¬M, 1

〉
,
〈
¬M v (s+ 1)kM ′

〉
}

∪ {
〈
∃ri.¬M vM ′, 1

〉
,
〈
M ′ v ∀ri.¬M, 1

〉
| 1 ≤ i ≤ n}.

33

We can then combine all these ontologies together to construct

OP := A0
P ∪ O0 ∪ {T iP | 0 ≤ i ≤ n}.

As described before, the intuition is that every model of this ontology
should describe the search tree for P. We first give a “canonical” de-
scription of this tree through the interpretation IP = ({1, . . . , n}∗, ·IP)
given by:

• aIP = ε,

• V IP (µ) = 0.←−vµ, W IP (µ) = 0.←−wµ,

• V IPi (µ) = 0.←−vi , W IPi (µ) = 0.←−wi,

• MIP (µ) = 1− (s+ 1)k|µ|+1,

• rIPi (µ, µ′) =

{
1 if µ′ = µi,

0 otherwise,

and the auxiliary concept names V ′i ,W
′
i ,M

′ are interpreted in the unique
way that satisfies the rest of the axioms.

It is easy to see that IP is a model of OP . Moreover, since every
µ ∈ {1, . . . , n}∗ has exactly n successors with degree greater than 0, it
follows that IP must be also witnessed: the infima and suprema have
to be computed over a finite domain, and hence become minima and
maxima. More interesting is that IP is indeed a canonical description
of all witnessed models:

Lemma 3.9. Let I be a witnessed model of OP . There exists a function
f : ∆IP → ∆I such that, for every µ ∈ ∆IP , CIP (µ) = CI(f(µ)) holds
for every concept name C appearing in OP and rIi (f(µ), f(µi)) = 1
holds for every i, 1 ≤ i ≤ n.

Proof. First recall that the axioms in T 0
P ensure that Vi,Wi are inter-

preted as constants in every model, and hence for these concept names
the result trivially holds. We now extend it to all other concept names.

The function f is built inductively on the length of µ.
First, since I is a model of A0

P ∪ O0, there must be a δ ∈ ∆I such
that aI = δ. Since the assertions in A0

P ∪ O0 fixes the interpretation

34

of all remaining concept names, f(ε) = δ satisfies the condition of the
lemma.

Let now µ ∈ ∆IP be such that f(µ) has been already defined. By
induction, we can assume that V I(f(µ)) = 0.←−vµ,W I(f(µ)) = 0.←−wµ, and
MI(f(µ)) = 1 − (s + 1)−(k|µ|+1) hold. Since I is a witnessed model
of 〈> v ∃ri.>, 1〉 for all i, 1 ≤ i ≤ n, there exists a γi ∈ ∆I with
rIi (f(µ), γi) = 1.

As I satisfies all the axioms from T iP , it follows, as explained above,
that V I(γi) = 0.←−−vµvi = V IP (µi) and W I(γi) = W IP (µi). Moreover,
since it also satisfies the axioms in O0, we have that M ′I(δ) = (s +
1)−(k|µ|+1+k) = (s+ 1)−(k|µi|+1). The last two axioms ensure then that
MI(γi) = M ′I(δ) = (s+ 1)−(k|µi|+1). Thus, setting f(µi) = γi satisfies
the condition of the lemma.

This means that the search tree, together with a bound for the dif-
ferences between the words vν and wν is encoded in every witnessed
model of OP . We now restrict these models to ensure that vν 6= wν for
all ν ∈ {1, . . . , n}∗.

Consider the ontology

O′P = OP ∪ O 6=
O 6= = {〈> v ∀ri.(¬((¬V tW) u (¬W t V)) tM), 1〉 | 1 ≤ i ≤ n}.

Recall that in the Lukasiewicz t-norm, ¬x ⊕ y ≡ x ⇒ y. Thus, the
above axioms say that for every i, 1 ≤ i ≤ n and every νi ∈ {1, . . . , n}+
it holds that

((¬V tW) u (¬W t V))I(f(νi))⇒MI(f(νi)) ≥ 1.

We know that if vνi = wνi, then the left-hand-side of this implication is
1; since MI(f(νi)) < 1, that would violate the restriction. Moreover,
we know by the way M was defined that if vνi 6= wνi, then the restriction
is satisfied. We thus have reduced the PCP to ontology (in)consistency
of L-ALC.
Theorem 3.10. P has a solution iff O′P is inconsistent.

Proof. Suppose first that P has a solution νi ∈ {1, . . . , n}+. We need
to show that O′P has no model. Suppose that we have a model I of OP ,
then we will show that I violates at least one of the axioms from O 6=.

35

Since I is a model of OP , from Lemma 3.9 we know that there is a
function f : ∆IP → ∆I such that

• V I(f(νi)) = V IP (νi) = 0.←−vνi,

• W I(f(νi)) = W IP (νi) = 0.←−wνi,

• MI(f(νi)) = MIP (νi) = 1− (s+ 1)k|νi|+1, and

• rIi (f(ν), f(νi)) = 1.

Sinc νi is a solution of P, we have that vνi = wνi and hence

(¬V tW)I(f(νi)) = (¬W t V)I(f(νi)) = 1− 0.←−vνi + 0.←−vνi = 1.

This implies that

(¬((¬V tW) u (¬W t V)) tM)I(f(νi)) = MI(f(νi)) < 1.

In particular, this means that

∀ri.(¬((¬V tW) u (¬W t V)) tM)I(f(ν))

≤ rIi (f(ν), f(νi))⇒MI(f(νi)) < 1.

violating the axiom in O6=.
For the converse, assume now that O′P is inconsistent; we will show

that P has a solution. Since O′P is inconsistent, it has no model. In
particular, IP is not a model of O′P . But we know that IP is a model of
OP , hence IP must violate some axiom from O 6=. That is, there must
exist a ν ∈ {1, . . . , n}∗ and i, 1 ≤ i ≤ n such that

∀ri.(¬((¬V tW) u (¬W t V)) tM)IP (ν) < 1.

We will show now that νi is a solution of P.
Since ν has exactly one ri successor (namely νi) and rIPi (ν, νi) = 1,

it follows that

(¬((¬V tW) u (¬W t V)) tM)IP (νi) < 1. (3.4)

If ←−vνi < ←−wνi, then (¬V tW)IP (νi) = 1 holds and as explained before,
(¬W t V)IP (νi) ≤MIP (νi) but then

(¬((¬V tW) u (¬W t V))IP (νi) ≥ 1−MIP (νi),

36

which violates the inequality (3.4). An analogous argument shows that
if ←−wνi <←−vνi we also obtain a contradiction.

We thus conclude that←−wνi =←−vνi and hence νi is a solution for P.

Since the PCP is known to be undecidable, we get undecidability of
ontology consistency in L-ALC.

Corollary 3.11. Ontology consistency in L-ALC is undecidable.

It should be noted that L-ALC is not the only fuzzy DL that is known
to be undecidable. In fact, several undecidability results are known for
variants of ALC, using different constructors or axioms, and for a wide
variety of semantics, including the product t-norm.

Given these negative results—if we cannot effectively reason in these
logics, then they are not suitable for knowledge representation—we turn
our attention to a restricted semantics where only finitely many truth
degrees are allowed.

37

4 Finite Lattice Semantics

We have seen that under Gödel semantics, reasoning is not harder than
in the crisp case. However, if we use any other continuous t-norm, then
it is conjectured that reasoning already becomes undecidable (as we
showed for the Lukasiewicz in the previous chapter). One of the main
reasons for this huge jump in the complexity of reasoning is that the
Gödel t-norm is, in some way, only finitely-valued. Indeed, as we saw in
Chapter 2, although the semantics is based on the whole interval [0, 1],
we can restrict reasoning to models that only use the truth degrees
explicitely appearing in the axioms of the ontology, and forget about all
other truth degrees. This property does not hold in any other continuous
t-norm: it is always possible to build an ontology whose models require
infinitely many different truth degrees. [Exercise?]

Thus, to regain decidability (and a lower complexity) of reasoning,
it makes sense to restrict the semantics to finitely many truth degrees.
This has the additional advantage of removing the restriction on hav-
ing a total order within these degrees. We will generalize to so-called
residuated lattices.

4.1 Residuated Lattices

A lattice is an algebraic structure (L,∨,∧) over a carrier set L with
the two binary operations ∨ (called the join) and ∧ (the meet) that
satisfy the following properties: they are idempotent, associative, and
commutative and satisfy the absorption laws

`1 ∨ (`1 ∧ `2) = `1 = `1 ∧ (`1 ∨ `2)

for every `1, `2 ∈ L.
In every lattice L we have a partial order ≤, defined for every `1, `2 ∈

L by `1 ≤ `2 iff `1 ∧ `2 = `1. An antichain of L is a subset T ⊆ L

38

whose elements are pairwise incomparable; that is, for every `1, `2 ∈ T ,
if `1 ≤ `2, then `1 = `2.

We say that the lattice L is distributive if ∨ and ∧ distribute over
each other:

(`1 ∧ `2) ∨ `3 = (`1 ∨ `3) ∧ (`2 ∨ `3)

(`1 ∨ `2) ∧ `3 = (`1 ∧ `3) ∨ (`2 ∧ `3),

and is bounded if it has a minimum and a maximum element, denoted
as 0 and 1, respectively. It is complete if joins and meets of arbitrary
subsets T ⊆ L, denoted by

∨
t∈T t and

∧
t∈T t respectively, exist.

Clearly, every finite lattice is also complete, and every complete lattice
is bounded, with 0 =

∧
t∈L t and 1 =

∨
t∈L t.

A De Morgan lattice is a bounded distributive lattice extended with a
unary operation∼, called the (De Morgan) negation which is: involutive
(∼∼ ` = `), antimonotonic (if `1 ≤ `2, then ∼ `2 ≤ ∼ `1), and satisfies
the De Morgan laws ∼(`1∨`2) = ∼ `1∧∼ `2 and ∼(`1∧`2) = ∼ `1∨∼ `2
for every `1, `2 ∈ L.

Definition 4.1 (Residuated lattice). A residuated lattice is a lattice
(L,∨,∧) extended with two binary operators ⊗ and ⇒ satisfying the
following properties:

• ⊗ is associative, commutative, monotonic and has 1 as its unit

• `1 ⊗ `2 ≤ `3 iff `2 ≤ `1 ⇒ `3 holds for every `1, `2, `3 ∈ L.

4
In this case, we have `1 ⇒ `2 =

∨{` | `1 ⊗ ` ≤ `2} for all `1, `2 ∈ L.
A simple example of a residuated lattice is a distributive lattice, with
⊗ given by the infimum ∧ and `1 ⇒ `2 =

∨{` | `1 ∧ ` ≤ `2}. [Exercise:
show that this is a residuated lattice; what happens if the lattice is not
distributive?]

For consistency, we will call the operator ⊗ a t-norm, and ⇒ its
residuum. If ⊗ = ∧, then we will call this the Gödel t-norm.

As it was the case for t-norms from the previous chapters, we have
the following simple properties: for every `1, `2 ∈ L,

• 1⇒ `1 = `1, and

39

• `1 ≤ `2 iff `1 ⇒ `2 = 1.

If L is a residuated De Morgan lattice then the t-conorm ⊕ is given
by `1 ⊕ `2 := ∼(∼ `1 ⊗∼ `2). The t-conorm of the Gödel t-norm is the
supremum operator ∨.

The precomplement 	 is given by 	` = `⇒ 0. For the Gödel t-norm,
the precomplement defines the Gödel negation

	` =

{
0 if ` 6= 0,

1 otherwise.

For the following, L is always a finite residuated De Morgan lattice.
For every such L, we define the logic ALCL, that has the same syntax

as crisp ALC. We will only focus on the problem of concept satisfiability,
and hence do not introduce any ABox axioms. The axioms of this logic
are GCIs of the form 〈C v D, `〉, where C,D are ALCL concepts and
` ∈ L.

Definition 4.2 (semantics of ALCL). A fuzzy interpretation is a pair
I = (∆I , ·I) where ∆I is a non-empty set, called the domain and ·I is
a function mapping:

• every concept name A ∈ NC to a function AI : ∆I → L, and

• every role name r ∈ NR to a function rI : ∆I ×∆I → L.

This function is extended to concept descriptions as follows. For every
x ∈ ∆I :

• >I(x) = 1, ⊥I(x) = 0,

• (¬C)I(x) = 	CI(x),

• (C uD)I(x) = CI(x)⊗DI(x),

• (C tD)I(x) = CI(x)⊕DI(x),

• (∃r.C)I(x) = supy∈∆I{rI(x, y)⊗ CI(y)},

• (∀r.C)I(x) = infy∈∆I{rI(x, y)⇒ CI(y)}.

40

I satisfies the GCI 〈C v D, `〉 if CI(x)⇒ DI(x) ≥ ` for every x ∈ ∆I .
I is a model of an ontology O if it satisfies all the axioms in O. 4

As said before, we are interested in the problem of satisfiability of
a concept, which intuitively describes how true a concept can be in a
model of an ontology.

Definition 4.3 (satisfiability). A concept C is `-satisfiable w.r.t. an
ontology O, for ` ∈ L, if there exists a model I of O and x ∈ ∆I such
that CI(x) ≥ `. 4

[Notice that satisfiability is independent of any assertional axioms;
thus, in the following, whenever we speak of an ontology, we will w.l.o.g.
assume that it is only a TBox.]

We will show that satisfiability is decidable in exponential time using
a reduction to emptiness of automata.

4.2 Looping Tree Automata

We use a very simple kind of automata over infinite k-ary trees, for
some fixed k ∈ N, that has no alphabet, and no additional acceptance
condition.

We will represent the nodes of an infinite k-ary tree by words from
{1, . . . , k}∗, where ε is the root node and for every u ∈ {1, . . . , k}∗, ui
is the i-th successor of the node u. [Binary Tree Drawing] A path is a
sequence u1, . . . , um of nodes such that u1 = ε and ui+1 is a successor
of ui for every i ≥ 1.

For brevity, we denote as K the set {1, . . . , k}.

Definition 4.4 (looping automata). A looping tree automaton (LA)
over k-ary trees is a tuple A = (Q, I,∆) where

• Q is a finite set of states,

• I ⊆ Q is a set of initial states, and

• ∆ ⊆ Qk+1 is the transition relation.

A run of A is a function r : K∗ → Q that assigns states to every node
of the tree K∗, such that:

41

• r(ε) ∈ I, and

• (r(u), r(u1), . . . , r(uk)) ∈ ∆ for every u ∈ K∗.

4

The relevant decision problem for LA is to decide whether there is
a run of a given automaton A or not. This is known as the emptiness
problem.

Let A be an LA. The emptiness problem of A can be decided in
polynomial time using a “bottom-up” procedure that detects all states
that cannot appear in a run (“bad” states) and then verifies that there
is at least one initial state that is not bad (and which will be the root
of the existing run).

The set of bad states is built iteratively as follows:

1. bad0 = ∅

2. for every i ≥ 0, let Si be the set of all states q ∈ Q such that, for
every transition (q, q1, . . . , qk) ∈ ∆, we have {q1, . . . , qk} ∈ badi.
Then badi+1 = badi ∪ Si.

It can be shown that A has a run iff I \ bad|Q| 6= ∅.
Thus, to test emptiness of A, we need to iterate |Q| times the com-

putation of bad states. Each of these iterations needs to look at every
transition in ∆ exactly once, and do a set comparison with the result
of the previous iteration. Thus, in total this algorithm takes O(Qk+2)
steps; that is, it runs in time polynomial on the size of A.

4.3 Deciding Satisfiability

To decide `-satisfiability of a concept C w.r.t. an ontology O, we will
build an automaton AC,O whose runs represent tree-like models of O
with domain K∗. The states of this automaton will represent the mem-
bership degree of a node to all relevant concepts. Then, `-satisfiability
is ensured by restricting the root node to belong to the concept C with
a degree at least `.

This construction is based on the fact that an ontology has a wit-
nessed model if and only if it has a well-structured tree-shaped model,

42

called a Hintikka tree. To define these models, we need the notion of
subconcepts.

Definition 4.5 (subconcepts). The set sub(C) of subconcepts of a con-
cept C is inductively defined as follows:

• sub(A) = A for A ∈ NC ∪ {>,⊥},

• sub(C uD) = {C uD} ∪ sub(C) ∪ sub(D),

• sub(C tD) = {C tD} ∪ sub(C) ∪ sub(D),

• sub(¬C) = {¬C} ∪ sub(C),

• sub(∃r.C) = {∃r.C} ∪ sub(C), and

• sub(∀r.C) = {∀r.C} ∪ sub(C).

For a concept C and an ontology O,

sub(C,O) := sub(C) ∪
⋃

〈DvE,`〉∈O
sub(D) ∪ sub(E).

The nodes of Hintikka trees are labeled with Hintikka functions: fuzzy
sets over sub(C,O)∪{ρ}, where ρ is an arbitrary new element, that are
propositionally consistent.

Definition 4.6 (Hintikka function). A Hintikka function for C,O is a
function H : sub(C,O) ∪ {ρ} → L such that

• H(>) = 1, H(⊥) = 0,

• H(D u E) = H(D)⊗H(E),

• H(D t E) = H(D)⊕H(E), and

• H(¬C) = ∼H(C).

H is compatible with the GCI 〈D v E, `〉 ∈ O if H(D)⇒ H(E) ≥ `. 4

43

The arity of the Hintikka trees is determined by the number of existen-
tial and universal restrictions in sub(C,O). Intuitively, each successor
will be the witness of one of these restrictions. For the construction it
will be important to know which successor witnesses which restriction;
thus we fix an arbitrary bijection

ϕ : {E ∈ sub(C,O) | E is of the form ∃r.F or ∀r.F} → K.

Finally, a local condition between nodes and their successors ensures
that the existential and universal restrictions are satisfied.

Definition 4.7 (Hintikka condition). A tuple (H0, H1, . . . ,Hk) of Hin-
tikka functions for C,O satisfies the Hintikka condition if:

1. For every existential restriction ∃r.D ∈ sub(C,O), it holds that
H0(∃r.D) = Hϕ(∃r.D)(ρ) ⊗ Hϕ(∃r.D)(D). Additionally, for ev-
ery quantified concept F of the form ∃r.E or ∀r.E it holds that
H0(∃r.D) ≥ Hϕ(F)(ρ)⊗Hϕ(F)(D).

2. For every value restriction ∀r.D ∈ sub(C,O), it holds thatH0(∀r.D) =
Hϕ(∀r.D)(ρ) ⇒ Hϕ(∀r.D)(D). Additionally, for every quantified
concept F of the form ∃r.E or ∀r.E it holds that H0(∀r.D) ≤
Hϕ(F)(ρ)⇒ Hϕ(F)(D).

Each of these conditions ensures two things: first, that a witness of
each quantified formula exists, and second, that the semantics of the
quantifiers are satisfied.

Definition 4.8 (Hintikka tree). A Hintikka tree for C,O is a labeled
k-ary tree T such that, for every node u ∈ K∗, T(u) is a Hintikka
function compatible with O, and (T(u),T(u1), . . . ,T(uk)) satisfies the
Hintikka condition.

Given a Hintikka tree T for C,O, we define the interpretation IT =
(K∗, ·IT), where AIT(u) = T(u)(A) for every A ∈ NC, and

rIT(u, v) =

{
T(v)(ρ) if v = ui, 1 ≤ i ≤ k,

0 otherwise.

44

Lemma 4.9. Let T be a Hintikka tree for C,O. For every D ∈
sub(C,O) and u ∈ K∗ it holds that DIT(u) = T(u)(D).

Proof. The proof is by induction on the structure of D. If D is a concept
name, the result follows trivially from the definition of IT. Since T(u)
is a Hintikka function for every u ∈ K∗, it follows that:

• >IT(u) = 1 = T(u)(>) and ⊥IT(u) = 0 = T(u)(⊥),

• (D1 u D2)IT(u) = DIT1 (u) ⊗ DIT2 (u) = T(u)(D1) ⊗ T(u)(D2) =
T(u)(D1 uD2), and analogously for disjunction,

• (¬D)IT(u) = ∼DIT(u) = ∼T(u)(D) = T(u)(¬D).

For the quantified concepts, we have:

(∃r.D)IT(u) =
∨

v∈K∗
rIT(u, v)⊗DIT(v) =

k∨

i=1

rIT(u, ui)⊗DIT(ui)

= rIT(u, uϕ(∃r.D))⊗DIT(uϕ(∃r.D))

= T(uϕ(∃r.D))(ρ)⊗T(uϕ(∃r.D))(D)

= T(u)(∃r.D).

and analogously for the value restrictions.

In particular, Hintikka trees are models of the ontology.

Corollary 4.10. If T is a Hintikka tree for C,O, then IT is a model
of O.

Proof. Let 〈C v D, `〉 ∈ O and u ∈ K∗. Since T(u) is compatible with
this axiom, it follows that

CIT(u)⇒ CIT(u) = T(u)(C)⇒ T(u)(D) ≥ `.

This means that we can decide satisfiability by looking for Hintikka
trees.

45

Theorem 4.11. Let C be an ALCL concept, O an ontology, and ` ∈ L.
C is `-satisfiable w.r.t. O (in a witnessed model) iff there is a Hintikka
tree T for C,O such that T(ε)(C) ≥ `.
Proof. The if direction was shown in Corollary 4.10.

For the only if direction, let I be a witnessed model of O and x ∈ ∆I

such that CI(x) ≥ `. We build inductively a function f : K∗ → ∆I

and a Hintikka tree T such that T(u)(D) = DI(f(u)) holds for every
u ∈ K∗ and D ∈ sub(C,O).

First we set f(ε) = x and for every D ∈ sub(C,O), T(ε)(D) = DI(x).
Since I is a model, it directly follows that T(ε) is a Hintikka function
compatible with O. Moreover, we have that T(ε)(C) = CI(x) ≥ `.

Let now u ∈ K∗ be a node for which f(u) and T(u) have been
already defined. Given an existential restriction ∃r.D ∈ sub(C,O),
since I is witnessed, we know that there exists a y∃r.D ∈ ∆I such
that (∃r.D)I(f(u)) = rI(f(u), y∃r.D) ⊗DI(y∃r.D). Moreover, for every
z ∈ ∆I , (∃r.D)I(f(u)) ≥ rI(f(u), z) ⊗ DI(z). Dually, for every value
restriction ∀r.D ∈ sub(C,O) there is a y∀r.D ∈ ∆I with (∀r.D)I(f(u)) =
rI(f(u), y∀r.D)⇒ DI(y∀r.D) and (∀r.D)I(f(u)) ≤ rI(f(u), z)⇒ DI(z).

For every i, 1 ≤ i ≤ k, we define f(ui) = yϕ−1(i). From the above con-
siderations, it follows that (T(u),T(u1), . . . ,T(uk)) satisfies the Hin-
tikka condition.

Thus T is a Hintikka tree for C,O with T(ε)(C) ≥ `.

To decide the existence of such a Hintikka tree, we use a looping
automaton over k-ary trees. The idea is that the runs of this automaton
correspond exactly to Hintikka trees satisfying the root condition. Then,
concept satisfiability is reduced to the emptiness problem of looping
automata.

Definition 4.12 (Hintikka automaton). Let C be an ALCL concept,
O an ontology and ` ∈ L. The Hintikka automaton for C,O, ` is the
LA AC,O,` = (Q, I,∆) where:

• Q is the set of all Hintikka functions for C,O compatible with O,

• I contains all Hintikka function H such that H(C) ≥ `, and

• ∆ is the set of all (k+ 1)-tuples of Hintikka functions that satisfy
the Hintikka condition.

46

It is easy to see that AC,O,` has a run if and only if there is a Hintikka
tree as in Theorem 4.11. We thus obtain the following result.

Corollary 4.13. A concept C is `-satisfiable w.r.t. an ontology O (in
a witnessed model) iff the automaton AC,O,` has a run.

We can decide whether an automaton A has a run in polynomial
time on the number of states of A. Corollary 4.13 shows then that
concept satisfiability is decidable, and needs only time polynomial on
the number of states of AC,O,`.

Since states are functions H : sub(C,O) → L, the number of states
is bounded by the number of such functions; thus, there are at most
|L||sub(C,O)| states in AC,O,`. Notice that |sub(C,O)| is bounded poly-
nomially on the size of the input C,O, and L is a constant since we
assume that the lattice is fixed for setting the semantics.

Thus, the number of states of the automaton is exponential on the
size of C,O. In total, this means that satisfiability in ALCL can be
decided in exponential time on the size of C,O.

Theorem 4.14. Satisfiability of ALCL concepts (w.r.t. witnessed mod-
els) is ExpTime-complete.

47

