

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Fuzzy Description Logics

Exercise Sheet 2

Dr. Rafael Peñaloza / Dr. Felix Distel Winter Semester 2011/2012

Exercise 1

Can the following statements in natural language be expressed in \mathcal{EL} ? If possible, give an \mathcal{EL} -axiom that captures their meaning.

- Superheroes that wear bat-costumes have sidekicks.
- Someone whose opponent is a superhero is a supervillain.
- Only superheroes and supervillains can have superpowers.

Exercise 2

Prove the following statement for the Gödel semantics. Let α , β , γ , q_1 , $q_2 \in [0, 1]$. If

$$(\alpha \Rightarrow \beta) \ge q_1$$

and

$$(\beta \Rightarrow \gamma) \ge q_2$$

then

$$(\alpha \Rightarrow \gamma) \ge \min(q_1, q_2).$$

Exercise 3

Consider the fuzzy ABox

 $\mathcal{A} = \{ \langle A(a), 0.5 \rangle, \langle r(a, b), 0.9 \rangle, \langle r(a, c), 0.7 \rangle \}$

and the fuzzy TBox

$$\mathcal{T} = \{ \langle A \sqsubseteq \forall r. (A \sqcup \neg B), 0.8 \rangle, \\ \langle A \sqsubseteq \exists r. \neg B, 0.9 \rangle$$

Present a non-crisp model of \mathcal{A} and \mathcal{T} .

Exercise 4

Consider a set of concept names

 $\mathcal{N}_{C} = \{ \text{DifficultSubject, SmartPerson} \}$

and a set of role names

$$\mathcal{N}_R = \{$$
likes, basedOn $\}$.

Let a fuzzy interpretation be given by the following graphical representation (absent edges are meant to be read as 0, e.g. in this example likes^I(Student, Professor) = 0).

Give the interpretations of the following concept descriptions.

- a) SmartPerson ⊓∃likes.DifficultSubject
- b) ∀likes.∃basedOn.DifficultSubject
- c) ∃likes.∀basedOn.DifficultSubject