

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Fuzzy Description Logics

Exercise Sheet 4

Dr. Rafael Peñaloza / Dr. Felix Distel Winter Semester 2011/2012

Exercise 1

Show that the completion algorithm for Gödel- \mathcal{EL} terminates in polynomial time.

Exercise 2

In crisp \mathcal{ALCH} (i.e. \mathcal{ALC} extended with role inclusions) express that

- a) Someone who has a sidekick also has a teammate.
- b) A person's sidekick is always that person's teammate.

Exercise 3

Let \mathcal{T} be the TBox $\mathcal{T} = \{ \langle \exists r.A \sqsubseteq A, 0.5 \rangle \}$. Using the translation to crisp \mathcal{ALCH} from the lecture check whether $A \sqcap \forall r. \bot$ is subsumed by $\exists r. (A \sqcup B)$ wrt \mathcal{T} to degree 0.5 when the semantics are restricted to witnessed models.

Exercise 4

Prove or disprove:

- a) There is an interpretation \mathcal{I} and $x \in \Delta^{\mathcal{I}}$ such that $(\forall r. \neg \neg A)^{\mathcal{I}}(x) \Rightarrow (\forall r. A)^{\mathcal{I}}(x) = 0$.
- b) There is a witnessed interpretation \mathcal{I} and $x \in \Delta^{\mathcal{I}}$ such that $(\forall r. \neg \neg A)^{\mathcal{I}}(x) \Rightarrow (\forall r. A)^{\mathcal{I}}(x) = 0.$

Exercise 5

As an alternative to the Gödel-negation one can define the involutive negation \sim whose semantics is defined as

$$(\sim C)^{\mathcal{I}}(x) = 1 - C^{\mathcal{I}}(x)$$

for all interpretations \mathcal{I} and all $x \in \Delta^{\mathcal{I}}$. Using Gödel- \mathcal{EL} and involutive negation construct a TBox \mathcal{T} and an ABox \mathcal{A} with the following properties.

- a) There is a constant $q \in (0, 1)$ and a concept name A occuring in \mathcal{T} such that $A^{\mathcal{I}}(x) = q$ for all models \mathcal{I} of \mathcal{T} and all $x \in \Delta^{\mathcal{I}}$.
- b) \mathcal{A} is inconsistent but becomes consistent if all occurrences of \neg are replaced by \sim .