

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Fuzzy Description Logics

Exercise Sheet 5

Dr. Rafael Peñaloza / Dr. Felix Distel Winter Semester 2011/2012

Exercise 1

Show that the following three binary operators are continuous t-norms:

- a) Lukasiewicz t-norm: $x \otimes y = \max\{x + y 1, 0\}$,
- b) Product t-norm: $x \otimes y = x \cdot y$,
- c) Gödel t-norm: $x \otimes y = \min\{x, y\}$.

Exercise 2

Show that for every continuous t-norm \otimes and its residuum \Rightarrow , and every *x*, *y*, *z* \in [0, 1]

- a) $x \leq y$ iff $(x \Rightarrow y) = 1$,
- b) $(1 \Rightarrow x) = x$,
- c) $x \Rightarrow (y \Rightarrow z) = (x \otimes y) \Rightarrow z$.

Exercise 3

A partial order on the set of all t-norms can be defined naturally as follows. Let \otimes_1 and \otimes_2 denote two t-norms. We write

 $\otimes_1 \leq \otimes_2 :\Leftrightarrow \forall u, v \in [0, 1] : u \otimes_1 v \leq u \otimes_2 v.$

Find two t-norms \otimes_{\min} and \otimes_{\max} such that every t-norm \otimes satisfies $\otimes_{\min} \leq \otimes \leq \otimes_{\max}$.

Exercise 4

Check for which of the three t-norms from Exercise 1 the following equalities hold. Provide a proof or a counterexample when appropriate.

- a) $\ominus \ominus x = x$
- b) $x \Rightarrow y = \ominus x \oplus y$
- c) $x \oplus y = \ominus (\ominus x \otimes \ominus y)$
- d) $x \otimes \ominus x = 1$
- e) $x \otimes (x \Rightarrow y) = x \otimes y$

Exercise 5

An element $x \in [0, 1]$ is called *idempotent* for a t-norm \otimes if it satisfies $x \otimes x = x$. Using ordinal sums, construct a continuous t-norm where exactly the values 0, 1 and the values from the interval [0.4, 0.6] are idempotent.