

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Fuzzy Description Logics

Exercise Sheet 7

Dr. Rafael Peñaloza / Dr. Felix Distel Winter Semester 2011/2012

Exercise 1

We consider the logic $\otimes - \mathcal{ALC}$ where \otimes is

- a) the Lukasiewicz-t-norm, or
- b) the Product-t-norm.

Give an ontology $\ensuremath{\mathcal{O}}$ such that

- $\bullet \ \mathcal{O} \ \text{is consistent, and}$
- in any model of $\mathcal O$ infinitely many truth values occur.

Exercise 2

Let $\mathbf{L} = (L, \land, \lor)$ be a lattice. Prove that the relation \leq as defined in the lecture has the following properties.

- a) \leq is a partial order, i.e. it is associative, commutative and anti-symmetric,
- b) $a \wedge b$ is the infimum of a and b with respect to \leq , and
- c) $a \lor b$ is the supremum of a and b with respect to \leq .

Exercise 3

Show that the following structures are lattices. For each of them draw a Hasse-diagram of the order relation. In each case find an operation \sim that turns it into a De Morgan lattice.

- a) $(\mathcal{P}(\{1, 2, 3\}), \cap, \cup)$, and
- b) the three valued logic $(\{1, 0, ?\}, \land, \lor)$ where we define

$$x \wedge y = \begin{cases} 1 & x = y = 1 \\ 0 & x = 0 \text{ or } y = 0 , \\ ? & \text{otherwise} \end{cases} \text{ and } x \vee y = \begin{cases} 0 & x = y = 0 \\ 1 & x = 1 \text{ or } y = 1 . \\ ? & \text{otherwise} \end{cases}$$

c) (D_{140}, gcd, lcm) where D_{140} is the set of all natural numbers that divide 140, and gcd and *lcm* denote the greatest common divisor and the least common multiple.

Exercise 4

Let (L, \land, \lor) be a distributive lattice. Define $x \otimes y = x \land y$ for all $x, y \in L$, and $x \Rightarrow y = \bigvee \{z \mid x \land z \leq y\}$ for all $x, y \in L$. Prove that $(L, \land, \lor, \otimes, \Rightarrow)$ is a residuated lattice.

Is this also true when *L* is not distributive?

Exercise 5

Let the looping tree automaton $\mathcal{A} = (\mathcal{Q}, \mathit{l}, \Delta)$ over binary trees be given by

- $Q = \{q_0, q_1, q_2\},\$
- $I = \{q_0\}$, and
- $\Delta = \{(q_0, q_0, q_1), (q_0, q_0, q_2), (q_1, q_1, q_2)\}.$

Does \mathcal{A} have a run?