

Faculty of Computer Science Institute for Theoretical Computer Science, Chair for Automata Theory

Fuzzy Description Logics

Exercise Sheet 8

Dr. Rafael Peñaloza / Dr. Felix Distel Winter Semester 2011/2012

Exercise 1

A *Büchi-automaton* is a tuple $\mathcal{A} = (\mathcal{Q}, \mathcal{I}, \Delta, \mathcal{F})$ where \mathcal{Q} is a set of states, $\mathcal{I} \in \mathcal{Q}$ is the initial state, $\Delta \subseteq \mathcal{Q} \times \Sigma \times \mathcal{Q}$ is a transition table and $\mathcal{F} \subseteq \mathcal{Q}$ is the set of accepting states.

A *run* of a Büchi-automaton on an infinite word $w = \sigma_1 \sigma_2 \dots$ is an infinite sequence $q_0 q_1 \dots$ such that $(q_i, \sigma_i, q_{i+1}) \in \Delta$ for all $i \in \mathbb{N}$. The run is *accepting* if some accepting state appears in it infinitely often. The automaton *accepts* the word *w* if there exists an accepting run on *w*.

Find a language that can be accepted by a Büchi-automaton but not by a looping automaton.

Exercise 2

Let *L* be the lattice $L = (D_{140}, \text{gcd}, \text{lcm})$ from the previous exercise sheet, where $\sim x = \frac{140}{x}$ and \otimes and \Rightarrow are defined as in Exercise 4 from Sheet 7, i.e. $x \otimes y = \text{gcd}(x, y)$ and $x \Rightarrow y = \bigvee \{ z \mid \text{gcd}(x, z) \mid y \}.$

Consider the ontology

$$\mathcal{O} = \{ \langle \neg B \sqsubseteq C, 28 \rangle, \\ \langle A \sqcup B \sqsubseteq C \sqcap \neg B, 140 \rangle, \\ \langle C \sqsubseteq \bot, 5 \rangle \}.$$

Can you find a Hintikka-function for \mathcal{O} that is compatible with all GCIs from \mathcal{O} ?