

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

## **Introduction to Automatic Structures**

## Solution to Exercise 17 b)

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Winter Semester 2011/2012

## Exercise 17

- b) In order to ensure that  $(L, \leq)$  represents a tree we need to ensure that
  - *L* contains a least element (the "root"):  $\phi_1 = \exists u. \forall v. u \leq v$
  - There is only one "path" to each element; in other words for each z ∈ L the set of elements of L that are smaller than z is totally ordered:
    φ<sub>2</sub> = ∀z.∀x.∀y.(x ≤ z) ∧ (y ≤ z) → (x ≤ y) ∨ (y ≤ x)
  - Every interval contains at most a finite number of nodes.
    φ<sub>3</sub> = ∀x.∀y.¬∃<sup>∞</sup>z.(x ≤ z) ∧ (z ≤ y).

To ensure infinite outdegree we proceed as follows.

- We can define a predicate for the immediate successor relation:
  S(x, y) = (x ≤ y) ∧ ¬(x = y) ∧ (∀z.(x ≤ z) ∧ (z ≤ y) → (x = z) ∨ (y = z))
- The tree has infinite outdegree if there is a node with an infinite number of immediate successors: φ<sub>4</sub> = ∃x.∃<sup>∞</sup>y.S(x, y)

The full formula would thus be  $\phi = \phi_1 \wedge \phi_2 \wedge \phi_3 \wedge \phi_4$ .