

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic Structures

Exercise Sheet 1

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Winter Semester 2011/2012

Exercise 1

Let $\Sigma = \{a, b\}$. Let L_1 be the language defined by

 $L_1 = \{ w \in \Sigma^* \mid \text{ the number of occurrences of } a \text{ in } w \text{ is odd} \}$

- a) Prove that L_1 is regular by giving a regular expression for it.
- b) Construct a finite automaton M such that $L_1 = L(M)$.

Exercise 2

Show that regular languages are closed under

- a) union,
- b) intersection,
- c) concatenation, and
- d) Kleene star.

Exercise 3

Let the non-deterministic finite automaton $M := (\{q_0, q_1, q_2\}, \{a, b\}, \{q_0\}, \Delta, \{q_1, q_2\})$ be given by the following transition system.

- a) Apply the power set construction to *M* in order to obtain a *deterministic* finite automaton that accepts the same language as *M*.
- b) Use your result to construct a finite automaton \overline{M} that accepts the complement of this language.

Exercise 4

Consider the alphabet $\Sigma = \{0, 1\}$. We assume that in its initial configuration a natural number $n \in \mathbb{N}$ is written on the tape of a Turing Machine in *binary encoding*. Construct

- a) a Turing Machine TM_1 that computes n + 1, and
- b) a Turing Machine TM_2 that computes 2n.