

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic Structures

Exercise Sheet 3

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Winter Semester 2011/2012

Exercise 9

Do the following structures have automatic presentations?

- a) (Z, +)
- b) the structure from Exercise 5 b), i.e. $(\{a\}^*, R_2, R_3)$ where

$$R_2 := \{(u, v, w) \mid u, v, w \in \{a\}^*, \text{length}(u) > \text{length}(v) > \text{length}(w)\}$$

and

$$R_3 := \{(u, v, w) \mid u, v, w \in \{a\}^*, \text{length}(u) > \text{length}(v) + \text{length}(w)\}$$

Exercise 10

Let Σ be a finite alphabet, R a binary relation on Σ^* such that (Σ^*, R) is automatic. Let f be the function that maps every word $w \in \Sigma^*$ to $f(w) = \overleftarrow{w}$, i.e. the word w written backwards. Define R' to be the relation

$$R' = \{ (f(w_1), f(w_2)) \mid (w_1, w_2) \in R \}.$$

Prove or disprove the following statements.

- a) The structure (Σ^*, R') is always automatic.
- b) The structure (Σ^*, R') always has an automatic presentation.

Exercise 11

Let A = (A, P) be a structure where $P \subseteq A$ is a unary relation and A is countably infinite. Show that A has an automatic presentation.

Exercise 12

(Constant Growth Lemma)

Let $f : \{0, 1\}^* \times \{0, 1\}^* \rightarrow \{0, 1\}^*$ be a bijection. Use the Constant Growth Lemma to prove that $\mathcal{A} = (\{0, 1\}^*, R)$ with

$$R = \{(u, v, f(u, v)) \mid u, v \in \{0, 1\}^*\}$$

is not automatic.