

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic Structures

Exercise Sheet 4

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Winter Semester 2011/2012

Exercise 13

Let Σ be a totally ordered alphabet and \leq_{lex} the lexicographic order on Σ^* . The length-lexicographic order \leq_{llex} is the binary relation on Σ^* where

 $w_1 \leq_{\text{llex}} w_2$ iff length $(w_1) < \text{length}(w_2)$ or length $(w_1) = \text{length}(w_2)$ and $w_1 \leq_{\text{lex}} w_2$.

Show that $(\Sigma^*, \leq_{\text{llex}})$ is automatic.

Exercise 14

Complete the construction of the automaton M_{α} in the proof of Theorem 3.1 for the remaining cases: equality, negation, disjunction.

Exercise 15

Let \mathcal{A} be a structure. Which of the following statements are true? Justify your answer.

- a) If model checking is decidable for $\mathcal A$ then the FOL theory of $\mathcal A$ is also decidable.
- b) If there is an algorithm for query containment for A then there is also an algorithm that decides model checking for A.
- c) If the FOL theory of A is decidable then model checking for A is also decidable.

Exercise 16

Consider the structure

 $\mathcal{A} = (\{0, 1\}^*; \leq, S_0, S_1, EqualLength)$

from Example 2.5, where \leq is the prefix relation, S_0 and S_1 append 0 and 1, respectively, and *EqualLength* checks for equal length. For each of the following relations R_i give a FOL-formula ϕ_i such that $(\mathcal{A}, \bar{a}) \models \phi_i(\bar{x})$ iff $\bar{a} \in R_i$.

- a) $R_1 = \{(u, v) \mid u, v \in \{0, 1\}^*, \text{length}(u) \le \text{length}(v)\},\$
- b) $R_2 = \{(u, v) | \text{ the } |v| \text{-th symbol in } u \text{ is } 0\}$, and
- c) $R_3 = \{(u, v, w) \mid u \text{ and } v \text{ differ in the } |w|\text{-th symbol}\}.$

Exercise 17

Let (L, \leq) be a poset.

- a) Give a FOX-formula to describe the pairs (x, y) such that the interval [x, y] contains an even number of elements.
- b) Give a FO ∞ -formula that characterizes trees with infinite outdegree.