

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic Structures

Exercise Sheet 5

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Winter Semester 2011/2012

Notice

Exercise 20 b) is a challenging exercise. It will not be discussed during the tutorial. Solutions can be sent via e-mail to Felix Distel until the end of the year.

Exercise 18

The *Post Correspondence Problem (PCP)* is a well-known undecidable problem. The version we consider here is defined as follows. An *instance* $I = ((u_1, ..., u_n), (v_1, ..., v_n))$ of *PCP* consists of two sequences of words over the alphabet $\{0, 1\}$. We call $s = s_1 s_2 \cdots s_k \in \{1, ..., n\}^+$ a *solution of* $((u_1, ..., u_n), (v_1, ..., v_n))$ iff

$$U_{S_1}U_{S_2}\cdots U_{S_k}=V_{S_1}V_{S_2}\cdots V_{S_k}.$$

The sequence $((\epsilon, \epsilon), (u_{s_1}, v_{s_1}), \dots, (u_{s_1}u_{s_2}\cdots u_{s_k}, v_{s_1}v_{s_2}\cdots v_{s_k}))$ is called the *construction of s*. In this exercise we examine a connection between PCP and the FOL theory of the structure

 $\mathcal{A} = (\{0, 1, \#, \$\}^*; is_{\epsilon}, is_0, is_1, is_{\#}, is_{\$}, \circ),$

where

- is_{ϵ} , is_0 , is_1 , $is_{\#}$ and $is_{\$}$ are unary predicates that decide whether a word is the empty word, the word 0, 1, # or \$, respectively, and
- the ternary relation ∘ checks whether in a given tuple (*w*₁, *w*₂, *w*₃) the word *w*₃ is the concatenation of *w*₁ and *w*₂.
- a) Give FOL formulae that define the following relations in \mathcal{A} .
 - The prefix relation \leq and the suffix relation \succeq .
 - The substring relation \subseteq .
 - The unary relation $only_{01}$ that contains all words from $\{0, 1\}^*$.
 - For a given word u ∈ {0, 1, #, \$}* the unary relation is_u contains only the word u itself.

b) For every instance $I = ((u_1, ..., u_n), (v_1, ..., v_n))$ of PCP define a FOL sentence ϕ_I with the following property: I has a solution iff ϕ_I belongs to the FOL theory of A.

Hint: You can encode the construction of the solution s as the string

 $S = \# \$ \# u_{s_1} \$ v_{s_1} \# u_{s_1} u_{s_2} \$ v_{s_1} v_{s_2} \# \cdots \# u_{s_1} u_{s_2} \cdots u_{s_k} \$ v_{s_1} v_{s_2} \cdots v_{s_k} \#$

c) Use your previous results to prove or refute the claim that ${\cal A}$ has an automatic presentation.

Exercise 19

Show that the following structures are isomorphic to structures that are FOL definable in the universal structure ($\{0, 1\}^*; \leq, S_0, S_1, EqualLength$). Give the corresponding FOL formulae.

- a) $(\mathbb{N}; \leq)$
- b) $(\mathbb{N};+)$

Exercise 20

We consider universal structures again.

- a) Give a structure \mathcal{A} other than $(\{0, 1\}^*; \preceq, S_0, S_1, EqualLength)$ that is universal in the following sense: if the structure \mathcal{B} has an automatic presentation then \mathcal{B} has an automatic presentation that is FOL definable in \mathcal{A} .
- b) Show that an automatic structure over the unary alphabet can never be universal.