

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Introduction to Automatic Structures

Exercise Sheet 7

Dr. Anni-Yasmin Turhan / Dr. Felix Distel Winter Semester 2011/2012

Exercise 26

Let $\Sigma = \{a, b\}$ and $L \subseteq \Sigma^{\omega}$ be the language recognized by the following Büchi-automaton:

Find a number $n \leq 1$ and regular languages $U_1, V_1, \ldots, U_n, V_n \subseteq \Sigma^*$ such that

$$\bigcup_{i=1}^{n} U_i \cdot V_i^{\omega} = L$$

Exercise 27

Let Σ be an alphabet. Prove the following.

- a) If $L \subseteq \Sigma^+$ is regular, then there exists a finite non-deterministic automaton \mathcal{M} with only *one* final state such that $L = L(\mathcal{M})$.
- b) If $L \subseteq \Sigma^*$ is regular, then there exists a finite non-deterministic automaton \mathcal{M} with at most *two* final states such that $L = L(\mathcal{M})$.
- c) There is *no* $k \ge 1$ such that the following holds: If $L \subseteq \Sigma^{\omega}$ is Büchi recognizable, then there exists a Büchi automaton \mathcal{M} with at most k final states such that $L = L_{\omega}(\mathcal{M})$.

Hint: Consider the languages a^{ω} , $a^{\omega} \cup b^{\omega}$, $a^{\omega} \cup b^{\omega} \cup c^{\omega}$, ...

Exercise 28

Prove the claim from Theorem 5.7 from the lecture: Every word automata presentable structure is Büchi automata presentable.

Exercise 29

Give MSO-formulae that define the languages from Exercise 24:

- a) $\{\alpha \in \Sigma^{\omega} \mid \text{the string } abc \text{ occurs in } \alpha\}$
- b) $\{\alpha \in \Sigma^{\omega} \mid \text{the string } abc \text{ occurs in } \alpha \text{ infinitely often} \}$
- c) $(a^+b^+c^+)^{\omega}$, i.e. the language that consists of the pattern "finitely many *a*s, followed by finitely many *b*s, followed by finitely many *c*s" repeated infinitely often.