

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 1

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 1

Consider the reduction system (M, \rightarrow) with $M = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, C_1, C_2, C_3, C_4, D, E\}$ and $\rightarrow \subseteq M \times M$:

- $A_1 \rightarrow B_1$, $A_1 \rightarrow B_2$, $A_2 \rightarrow B_1$, $A_2 \rightarrow B_2$, $A_3 \rightarrow B_3$, $A_4 \rightarrow B_3$,
- $B_1 \rightarrow C_1$, $B_2 \rightarrow C_2$, $B_2 \rightarrow C_3$, $B_3 \rightarrow C_1$, $B_3 \rightarrow C_2$, $B_3 \rightarrow C_3$, $B_3 \rightarrow C_4$,
- $C_3 \rightarrow E, C_4 \rightarrow E, and$
- $D \rightarrow C_4$.

Answer the following questions.

- a) Which of the following properties are satisfied by \rightarrow ? Justify your answer.
 - i) finite
 - ii) symmetric
 - iii) antisymmetric
 - iv) reflexive
 - v) irreflexive
 - vi) transitive
- b) Describe the following *closures*:

 $\stackrel{=}{\rightarrow}$, $\stackrel{+}{\rightarrow}$, $\stackrel{*}{\rightarrow}$, and \leftrightarrow .

Exercise 2

Let \rightarrow be the symbolic differentiation relation introduced in the lecture.

a) Compute the *normal forms* of the following terms:

i)
$$D_X(((X * X) * X) + (X * X))$$
, and

- ii) $D_X((X * Y) + (Y * Y)).$
- b) Prove that \rightarrow is *terminating*.

Exercise 3

In the lecture, a group was defined by the following identities:

$$(x \circ y) \circ z \approx x \circ (y \circ z) \tag{G1}$$

$$e \circ x \approx x$$
 (G2)

$$i(x) \circ x \approx e$$
 (G3)

a) Prove that groups satisfy the property that *e* is a right unit, i.e.

$$x \circ e \approx x$$
 (G2')

by showing that $x \circ e$ can be transformed to x using the identities G1, G2 and G3.

b) Consider the following identity:

$$x \circ i(x) \approx e$$
 (G3')

Prove that G1, G2 and G3' do not imply G2'.

Hint: Give a model of G1, G2 and G3' in which G2' does not hold; such a model exists with only two elements.

Exercise 4

Consider the following identities:

$$(x \circ y) \circ z \approx x \circ (y \circ z)$$
(R1)
$$(x \circ y) \circ x \approx x$$
(R2)

Prove or refute whether the following identities are implied by R1 and R2.

- a) $(x \circ x) \approx x$
- b) $(x \circ y) \circ z \approx x \circ z$