

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 4

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 15

The reduction relation \rightarrow enjoys the *diamond property* if

$$y_1 \leftarrow x \rightarrow y_2 \implies \exists z.y_1 \rightarrow z \leftarrow y_2.$$

Prove that, if \rightarrow enjoys the diamond property, then every element x is either in normal form or does not have a normal form.

Exercise 16

Let $(A, \rightarrow_1 \cup \rightarrow_2)$ be the reduction system obtained from the reduction systems (A, \rightarrow_1) and (A, \rightarrow_2) by building the union of the two reduction relations.

Prove or refute: If \rightarrow_1 and \rightarrow_2 are confluent, then so is $\rightarrow_1 \cup \rightarrow_2$.

Exercise 17

Does strong confluence imply the following property?

$$y_1 \leftarrow x \rightarrow y_2 \implies \exists z.y_1 \stackrel{=}{\rightarrow} z \stackrel{=}{\leftarrow} y_2$$

Give a proof or counterexample.

Exercise 18

Consider the terms s = f(x, g(h(k(k(y)), x), z), h(x, y)) and t = g(z, h(x, k(k(y)))). Describe $t|_1, t|_{1111}, t|_{11111}, t[s]_2$, and $t[s|_2]_{21}$.

Exercise 19

Prove the second part of Lemma 3.4 by induction on the length of words denoting positions: If $p \in Pos(s)$ and $q \in Pos(t)$, then

$$(s[t]_p)|_{pq} = t|_q$$

$$(s[t]_p)[r]_{pq} = s[t[r]_q]_p$$

Exercise 20

Let *E* be a set of identities and \rightarrow_E the induced reduction relation. Prove that \rightarrow_E and $\stackrel{*}{\rightarrow}_E$ are rewrite relations, i.e. are closed under substitutions and compatible with Σ -operations.