

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 5

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 21

Let ρ and τ be substitutions.

- a) Describe the variable range VRan($\rho\tau$).
- b) Under what conditions do we have $\rho \tau = \tau$?
- c) Under what conditions do we have $\tau \tau = \tau$?

Exercise 22

Let *E* be a set of identities with some $\ell \approx r \in E$ such that ℓ is a variable or $Var(r) \not\subseteq Var(\ell)$. Prove that \rightarrow_E is not terminating.

Exercise 23

Let $G_1 := \{f^3(a) \approx a, f^5(a) \approx a\}$ and $G_2 := \{f^4(a) \approx a, f^6(a) \approx a\}$. Consider the congruence closures of G_1 and G_2 and verify whether $f^2(a) \approx a$ holds in G_1 or G_2 .

Exercise 24

Let *G* be a set of ground identities and CC(G) the congruence closure of *G*. Complete the proof of Lemma 4.8 of the lecture by proving that $\rightarrow_G \subseteq CC(G)$.

Exercise 25

Let *u*, *x*, *y*, and *z* be variables. Use the unification algorithm recalled in the lecture to solve the following two unification problems:

- a) $S_1 := \{f(h(x), g(x, u)) = {}^? f(z, g(f(y, y), z))\}$
- b) $S_2 := \{h(x, g(x, y), y) = {}^? h(x, g(a, y), y), z = {}^? h(x, g(x, b), b)\}$

Exercise 26

From the unification algorithm recalled in the lecture, design a direct decision procedure for the matching problem.

Hint: "Direct" means that no constants are introduced in the right term. Instead, the rules are to be modified such that the new algorithm returns "the input terms do not match" or a matcher for the input terms as soon as possible.