

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 7

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 32

The following problem is known as *Hilbert's 10th problem*, and it has been proved to be undecidable.

Given: One polynomial $P \in \mathbb{Z}[X_1, \ldots, X_n]$. **Question:** Are there $a_1, \ldots, a_n \in \mathbb{N}$ such that $P(a_1, \ldots, a_n) = 0$?

Show that the undecidability of Hilbert's 10th problem implies the undecidability of the following problem, which you know from the lecture:

Given: Two polynomials $P, Q \in \mathbb{N}[X_1, \dots, X_n]$ and a decidable set $A \subseteq \mathbb{N} \setminus \{0\}$. **Question:** Is $P >_A Q$? That is, is $P(a_1, \dots, a_n) > Q(a_1, \dots, a_n)$ for all $a_1, \dots, a_n \in A$?

Exercise 33

Let $P \in \mathbb{Z}[X]$ be a polynomial with one indeterminate and coefficients in \mathbb{Z} .

- a) Prove for all $r \in \mathbb{Z}$: if P(r) = 0, then $r|a_0$, i.e. any root of P divides a_0 .
- b) Devise a decision procedure, which for each polynomial $P \in \mathbb{Z}[X]$ decides whether P has a root in \mathbb{Z} .
- c) Show that for polynomials with more than one indeterminate, the roots need not satisfy such a property.

Exercise 34

Consider the TRS $R = \{g(x, g(y, z)) \rightarrow g(g(x, y), z), g(g(x, y), z) \rightarrow g(y, y)\}$. Use a polynomial interpretation to prove that *R* terminates.

Hint: Try $p_g = xy + y^2$.

Exercise 35

A TRS *R* is called *right-irreducible* if each *r* with $\ell \rightarrow r \in R$ is irreducible. Prove or refute the following claim: If *R* is right-ground and right-irreducible, then *R* is terminating.

Exercise 36

Prove Lemma 5.20 from the lecture: Let \mathcal{A} be a monotone polynomial interpretation of Σ . Then $f^{\mathcal{A}}$ is a monotone function for each $f \in \Sigma$.