Term Rewriting Systems
Exercise Sheet 7
Prof. Dr.-Ing. Franz Baader
Winter Semester 2011/2012

Exercise 32
The following problem is known as Hilbert's 10th problem, and it has been proved to be undecidable.

Given: One polynomial \(P \in \mathbb{Z}[X_1, \ldots, X_n] \).

Question: Are there \(a_1, \ldots, a_n \in \mathbb{N} \) such that \(P(a_1, \ldots, a_n) = 0 \)?

Show that the undecidability of Hilbert's 10th problem implies the undecidability of the following problem, which you know from the lecture:

Given: Two polynomials \(P, Q \in \mathbb{N}[X_1, \ldots, X_n] \) and a decidable set \(A \subseteq \mathbb{N} \setminus \{0\} \).

Question: Is \(P \succ_A Q \)? That is, is \(P(a_1, \ldots, a_n) > Q(a_1, \ldots, a_n) \) for all \(a_1, \ldots, a_n \in A \)?

Exercise 33
Let \(P \in \mathbb{Z}[X] \) be a polynomial with one indeterminate and coefficients in \(\mathbb{Z} \).

a) Prove for all \(r \in \mathbb{Z} \): if \(P(r) = 0 \), then \(r | a_0 \), i.e. any root of \(P \) divides \(a_0 \).

b) Devise a decision procedure, which for each polynomial \(P \in \mathbb{Z}[X] \) decides whether \(P \) has a root in \(\mathbb{Z} \).

c) Show that for polynomials with more than one indeterminate, the roots need not satisfy such a property.

Exercise 34
Consider the TRS \(R = \{ g(x, g(y, z)) \rightarrow g(g(x, y), z), \ g(g(x, y), z) \rightarrow g(y, y) \} \). Use a polynomial interpretation to prove that \(R \) terminates.

Hint: Try \(p_g = xy + y^2 \).

Exercise 35
A TRS \(R \) is called right-irreducible if each \(r \) with \(\ell \rightarrow r \in R \) is irreducible. Prove or refute the following claim: If \(R \) is right-ground and right-irreducible, then \(R \) is terminating.

Exercise 36
Prove Lemma 5.20 from the lecture: Let \(\mathcal{A} \) be a monotone polynomial interpretation of \(\Sigma \). Then \(f^\mathcal{A} \) is a monotone function for each \(f \in \Sigma \).