

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 9

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 44

Prove the first part of Thm. 5.38 of the lecture: Let Σ be a finite signature, $s, t \in \mathcal{T}(\Sigma, V)$, and $>_{\text{lpo}}$ be a lexicographic path order. We can decide whether $s >_{\text{lpo}} t$ in time polynomial in |s| and |t|.

Hint: First, show that the condition

$$s >_{\text{lpo}} t_j$$
 for all j with $1 \le j \le n$

in (LPO2c) can be replaced with

$$s >_{lpo} t_i$$
 for all j with $i \le j \le n$ for i such that $s_1 = t_1 \dots s_{i-1} = t_{i-1}$, and $s_i >_{lpo} t_i$.

Use this modified condition to prove that the question whether $s >_{lpo} t$ holds can be decided in time $\mathcal{O}(|s| \cdot |t|)$.

Exercise 45

Prove that the termination of the TRS $R = \{f(f(x)) \rightarrow g(x), g(g(x)) \rightarrow f(x)\}$ cannot be proved using a lexicographic path order.

Exercise 46

Prove termination of the following TRS *R* using a lexicographic path order:

$$R = \{s(x) + (y + z) \to x + (s(s(y)) * z), \\ s(x_1) + (x_2 + (x_3 + x_4)) \to x_1 + (x_2 + (x_3 + x_4))\}$$

Exercise 47

Let Σ be finite signature with at least one constant symbol, > a strict partial order on Σ , and $>_{\text{lpo}}$ the lexicographic path order induced by >. Prove the following claim: If > is a total order on Σ , then $>_{\text{lpo}}$ is total on ground terms.

Exercise 48

Prove the following claim: If > is a reduction order on $\mathcal{T}(\Sigma, V)$ that is total on ground terms, then > satisfies the subterm property on ground terms, i.e. for each ground term *t* and position $p \in \text{Pos}(t) \setminus \{\varepsilon\}$, we have $t > t|_p$.