

Faculty of Computer Science Institute of Theoretical Computer Science, Chair of Automata Theory

Term Rewriting Systems

Exercise Sheet 10

Prof. Dr.-Ing. Franz Baader Winter Semester 2011/2012

Exercise 49

Complete the proof of Thm. 6.1 of the lecture: Let *E* be a set of identities over Σ . Prove the following equivalence for all terms $s, t \in T(\Sigma, V)$:

 $s \approx_E t$ iff const(s) \approx_E const(t),

where $const(\cdot)$ is a function that replaces every occurrence of a variable x with a constant $a_x \notin \Sigma$.

Exercise 50

Find terms r_1, r_2 such that $\{f(g(x)) \rightarrow r_1, g(h(x)) \rightarrow r_2\}$ is confluent.

Exercise 51

Compute all critical pairs for the TRS consisting of the following rules:

$$0 + y \rightarrow y, \ s(x) + y \rightarrow s(x + y)$$
$$x + 0 \rightarrow x, \ x + s(y) \rightarrow s(x + y)$$

Is the system locally confluent? Is it convergent?

Exercise 52

Finish Example 6.8 from the lecture: Show that the TRS $\{f(f(x)) \rightarrow g(x), f(g(x)) \rightarrow g(f(x))\}$ is terminating and confluent.

Exercise 53

Consider the decision procedure in Corollary 6.7 for the confluence of finite, terminating TRS. Can you establish an upper bound for the runtime of the procedure as a function of the size of the input TRS?

Exercise 54

Consider the system $\{f(x) \rightarrow g(x, y)\}$. Does it have any critical pairs? Is the induced rewrite relation confluent? What is going wrong here?

Exercise 55

Show that the TRS

$$\{(X * Y) * (Y * Z) \to Y, X * ((X * Y) * Z) \to X * Y, (X * (Y * Z)) * Z \to Y * Z\}$$

is confluent.